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Abstract

We consider the non-Lambertian object intrinsic prob-
lem of recovering diffuse albedo, shading, and specular
highlights from a single image of an object.

We build a large-scale object intrinsics database based
on existing 3D models in the ShapeNet database. Ren-
dered with realistic environment maps, millions of synthetic
images of objects and their corresponding albedo, shad-
ing, and specular ground-truth images are used to train an
encoder-decoder CNN. Once trained, the network can de-
compose an image into the product of albedo and shading
components, along with an additive specular component.

Our CNN delivers accurate and sharp results in this
classical inverse problem of computer vision, sharp details
attributed to skip layer connections at corresponding reso-
lutions from the encoder to the decoder. Benchmarked on
our ShapeNet and MIT intrinsics datasets, our model con-
sistently outperforms the state-of-the-art by a large margin.

We train and test our CNN on different object cate-
gories. Perhaps surprising especially from the CNN clas-
sification perspective, our intrinsics CNN generalizes very
well across categories. Our analysis shows that feature
learning at the encoder stage is more crucial for developing
a universal representation across categories.

We apply our synthetic data trained model to images and
videos downloaded from the internet, and observe robust
and realistic intrinsics results. Quality non-Lambertian in-
trinsics could open up many interesting applications such
as image-based albedo and specular editing.

1. Introduction
Specular reflection is common to objects encountered in

our daily life. However, existing intrinsic image decompo-
sition algorithms, e.g. SIRFS [3] or Direct Intrinsics (DI)

Figure 1: Specularity is everywhere on objects around us
and is essential for our material perception. Our task is
to decompose an image of a single object into its non-
Lambertian intrinsics components that include not only
albedo and shading, but also specular highlights. We build a
large-scale object non-Lambertian intrinsics database based
on ShapeNet, and render millions of synthetic images with
specular materials and environment maps. We train an
encoder-decoder CNN that delivers much sharper and more
accurate results than the prior art of direct intrinsics (DI).
Our network consistently outperform state-of-the-art espe-
cially for non-Lambertian objects and enables realistic ap-
plications to image-based albedo and specular editing.

[20], only deal with Lambertian or diffuse reflection. Such
mismatching between the reality of images and the model
assumption often leads to large errors in the intrinsic image
decomposition of real images (Fig. 1).

Our goal is to solve non-Lambertian object intrinsics
from a single image. According to optical imaging physics,
the old Lambertian model can be extended to a non-
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Lambertian model with the specular component as an ad-
ditive residue term:

old : image I = albedo A× shading S (1)
new : image I = albedo A× shading S + specular R (2)

We take a data-driven deep learning approach, inspired by
DI [20], to learn the associations between the image and its
albedo, shading and specular components simultaneously.

The immediate challenge of our non-Lambertian object
intrinsics task is the lack of ground-truth data, especially
for our non-Lambertian case, and human annotations are
just impossible. Existing intrinsics datasets are not only
Lambertian in nature, with only albedo and shading com-
ponents, but also have their own individual caveates. The
widely used MIT Intrinsic Images dataset [12] is very small
by today’s standard, with only 20 object instances under 11
illumination conditions. MPI Sintel [8] intrinsics dataset,
used by direct intrinsics, is too artificial, with 18 cartoon-
like scenes at 50 frames each. Intrinsics in the Wild (IIW)
[5] is the first large-scale intrinsics dataset of real world im-
ages, but it provides sparse pairwise human ranking judge-
ments on albedo only, an inadequate measure on full image
intrinsic image decomposition.

Another major challenge is how to learn a full multi-
ple image regression task at pixel- and intensity- accurate
level. Deep learning has been tremendously successful for
image classification and somewhat successful for seman-
tic segmentation and depth regression. The main differ-
ences lie in the spatial and tonal resolution demanded at
the output: It is full image and 1 bit for classification,
more for segmentation and depth regression, most for in-
trinsics tasks. The state-of-the-art DI CNN model [20] is
adapted from a depth regression CNN with a coarse na-
tive spatial resolution. Their results are not only blurry, but
also with false structures – variations in the output intrinsics
out of no structures in the input image. While benchmark
scores for many CNN intrinsics models [21, 34, 35, 20, 22]
are improving, the visual quality of results remains poor,
compared with those from traditional approaches based on
hand-crafted features and multitudes of priors [6].

Our work address these challenges and makes the fol-
lowing contributions.

1. New non-Lambertian object intrinsics dataset. We de-
velop a new rendering-based object-centric intrinsics
dataset with specular reflection based on ShapeNet, a
large-scale 3D shape dataset.

2. New CNN with accurate and sharp results. Our ap-
proach not only significantly outperforms the state-of-
the-art by every error metric, but also produces much
sharper and detailed visual results.

3. Analysis on cross-category generalization. Surprising
from deep learning perspective on classification or seg-
mentation, our intrinsics CNN shows remarkable gen-
eralization across categories: networks trained only
on chairs also obtain reasonable performance on other
categories such as cars. Our analysis on cross-category
training and testing results reveal that features learned
at the encoder stage is the key for developing a univer-
sal representation across categories.

Our model delivers solid non-Lambertian intrinsics results
on real images and videos, closing the gap between intrinsic
image algorithm development and practical applications.

2. Related Work
Intrinsic Image Decomposition. Much effort has been
devoted to this long standing ill-posed problem [4] of de-
composing an image into a reflectance layer and a shading
layer. Land and McCann [18] observe that large gradients
in images usually correspond to changes in reflectance and
small gradients to smooth shading variations. To tackle this
ill-posed problem where two outputs are sought out of a
single input, many priors that constrain the solution space
have been explored, such as reflectance sparsity [28, 30],
non-local texture [29], shape and illumination [3], etc. An-
other line of approaches seek additional information from
the input, such as image sequences [33], depth [2, 10] and
user strokes [7]. A major challenge in intrinsics research is
the lack of ground-truthed dataset. Grosse et al. [12] cap-
ture the first real image dataset in a lab setting, with limited
size and variations. Bell et al. [5] used crowdsourcing to
obtain human judgements on pairs of pixels.

Deep Learning. Narihira et al. [21] is the first to use
deep learning to learn albedo from IIW’s sparse human
judgement data. Zhou et al. [34] and Zoran et al. [35]
extend the IIW-CRF model with a CNN learning compo-
nent. Direct Intrinsics [20] is the first entirely deep learning
model that outputs intrinsics predictions, based on the depth
regression CNN by [11] and trained on the synthetic MPI
Sintel intrinsics dataset. Their results are blurry, with down-
sampling and convolutions followed by deconvolutions, and
poor due to training on artificial scenes. Our work builds
upon the success of skip layer connections used in deep
CNNs for classification [14] and segmentation [25, 27]. We
propose so-called mirror-links to forward early encoder fea-
tures to later decoder layers to generate sharp details.

Reflectance Estimation. Multiple images are usually
required for an accurate estimation of surface albedo. Ait-
tala et al. [1] proposes a learning based method for sin-
gle image inputs, assuming that the surface only contains
stochastic textures and is lit by known lighting directions.
Most methods work on homogeneous objects lit by dis-
tant light sources, with surface reflectance and environment



lighting estimated via blind deconvolution [26] or trained
regression networks [25]. Our work aims at general in-
trinsic image decomposition from a single image, without
constraints on material or lighting distributions. Our model
predicts spatially varying albedo maps and supports general
lighting conditions.

Learning from Rendered Images. Images rendered
from 3D models are widely used in deep learning, e.g.
[31, 19, 13, 23] for training object detectors and viewpoint
classifiers. [32] obtains state-of-the-art results for viewpoint
estimation by adapting CNNs trained from synthetic images
to real ones. ShapeNet [9] provides 330,000 annotated mod-
els from over 4,000 categories, with rich texture information
from artists. We build our non-Lambertian intrinsics dataset
and algorithms based on ShapeNet, rendering and learning
from photorealistic images on many varieties of common
objects.

3. Intrinsic Image with Specular Reflectance
We derived our non-Lambertian intrinsic decomposition

equation based on physics-based rendering. Given an in-
put image, the observed outgoing radiance I at each pixel
can be formulated as the product integral between incident
lighting L and surface reflectance ρ via this rendering equa-
tion [16]:

I =

∫

Ω+

ρ(ωi, ωo)(N · ωi)L(ωi) dωi. (3)

Here, ωo is the viewing direction, ωi the lighting direction
from the upper hemisphere domain Ω+, and N the surface
normal direction of the object.

Surface reflectance ρ is a 4D function usually defined as
the bi-directional reflectance distribution function (BRDF).
Various BRDF models have been proposed, all sharing a
similar structure with a diffuse term ρd and a specular term
ρs, and coefficients αd, αs:

ρ = αd · ρd + αs · ρs (4)

For the diffuse component, lights scatter multiple times and
produce view-independent and low-frequency smooth ap-
pearance. By contrast, for the specular component, lights
scatter on the surface point only once and produce shinny
appearance. The scope of reflection is modeled by diffuse
albedo αd and specular albedo αs.

Combining reflection equation (4) and rendering equa-
tion (3), we have the following image formation model:

I = αd

∫

Ω+

ρd(ωi, ωo)L(ωi) dωi

+ αs

∫

Ω+

ρs(ωi, ωo)L(ωi) dωi = αdsd + αsss,

(5)

Figure 2: Our mirror-link CNN architecture has one shared
encoder and three decoders for albedo, shading, specular
components separately. Mirror links connect the encoder
and decoder layers of the same spatial resolution, providing
visual details. The height of layers in this figure indicates
the spatial resolution.

where sd and ss are the diffuse and specular shading, re-
spectively. Traditional intrinsics models consider diffuse
shading only, by decomposing the input image I as a prod-
uct of diffuse albedo A and shading S. However, it is
only proper to model diffuse and specular components sep-
arately, since their albedos have different values and spatial
distributions. The usual decomposition of I = A × S is
only a crude approximation.

Specular reflectance αsss has characteristics very differ-
ent from diffuse reflectance αdsd: Both specular albedo and
specular shading have high-frequency spatial distributions
and color variations, making decomposition more ambigu-
ous. We thus choose to model specular reflectance as a sin-
gle residual term R, resulting in the non-Lambertian exten-
sion: I = A× S + R, where input image I is decomposed
into diffuse albedo A, diffuse shading S, and specular re-
flectance R respectively.

Our image formation model is developed based on
physics based rendering and physical properties of diffuse
and specular reflection, and it does not assume any spe-
cific BRDF model. Simple BRDF models (e.g. Phong) can
be used for rendering efficiency, and complex models (e.g.
Cook-Torrance) for higher photo-realism.

4. Learning Intrinsics

We develop our CNN model and training procedure for
non-Lambertian intrinsics.

Mirror-Link CNN. Fig. 2 illustrates our encoder-
decoder CNN architecture. The encoder progressively ex-
tracts and down-samples features, while the decoder up-
samples and combines them to construct the output intrin-
sic components. The sizes of feature maps (including in-
put/output) are exactly mirrored in our network. We link
early encoder features to the corresponding decoder layers
at the same spatial resolution, in order to obtain local sharp
details preserved in early encoder layers. We share the same
encoder and use separate decoders for A,S,R.



Figure 3: Environment maps are employed in our render-
ing for realistic appearance, both outdoor and indoor scenes
are included. The environment map not only represents the
dominate light sources in the scene (e.g. sun, lamp and win-
dow) but also includes correct information on the surround-
ings (e.g. sky, wall and building). Although a dominate light
might be sufficient for shading a Lambertian surface, de-
tailed surroundings provide the details in the specular.

Our mirror links are similar to skip connections in Deep
Reflectane Map (DRM) [25] and UNet [27]. However,
our goal is entirely different: DRM solves an interpolation
problem from high resolution sparse inputs to low resolu-
tion dense map outputs in the geometry space, ignoring the
spatial inhomogeneity of reflectance, whereas UNet deals
with image segmentation rather than image-wise regression.

Edge sensitive loss. Human vision is sensitive to edges,
however standard loss functions such as MSE treat pixel
errors equally. To get more precise and sharp edges, we
re-weight pixel errors with image gradients.

Scale invariant Loss. There is an inherent scale am-
biguity between albedo and shading, as only their product
matters in the intrinsic image decomposition. [20] employs
a weighted combination of MSE loss and scale-invariant
MSE loss for training their intrinsic networks. Scaling am-
biguity also exists in our formulation, and we combine these
loss functions with our edge-sensitive weighting for training
our network.

ShapeNet-Intrinsics Dataset. We obtain the geometry
and albedo texture of 3D shapes from ShapeNet, a large-
scale richly-annotated, 3D shape repository [9]. We pick
31,072 models from several common categories: car, chair,
bus, sofa, airplane, bench, container, vessel, etc. These ob-
jects often have specular reflections.

Environment maps. To generate photo-realistic images,
we collect 98 HDR environment maps from online public
resources1. Indoor and outdoor scenes with various illumi-
nation conditions are included, as shown in Fig. 3.

Rendering. We use an open-source renderer Mit-
suba [15] to render objects models with various environ-

1http://www.hdrlabs.com/sibl/archive.html

ment maps and random viewspoints sampled from the upper
hemisphere. A modified Phong reflectance model [24, 17]
is assigned to objects to generate photo-realistic shading
and specular effects. Since original models in ShapeNet
are only provided with reliable diffuse albedo, we use ran-
dom distribution for specular with ks ∈ (0, 0.3) and Ns ∈
(0, 300), which covers the range from pure diffuse to high
specular appearance (Fig. 1). We render albedo, shading
and specular layers, and then synthesize images according
to Equation 5.

Training. We split our dataset at the object level in or-
der to avoid images of the same object appearing in both
training and testing sets. We use 80/20 split, resulting in
24, 932 models for training and 6, 240 for testing. All the
98 environment maps are used to rendering 2, 443, 336 im-
ages for the training set. For the testing set, we randomly
pick 1 image per testing model.

More implementation details can be found in the supple-
mentary materials.

5. Evaluation
Our method is evaluated and compared with SIRFS [3],

IIW [5], and Direct Intrinsics (DI) [20]. We also train DI us-
ing our ShapeNet intrinsics dataset and denote the model as
DI*. We adopt the usual metrics, MSE, LMSE and DSSIM,
for quantitative evaluation.

5.1. Synthetic Data

Table 1 shows the numeric evaluation on the synthetic
testing set. Our algorithm performs consistently better than
others on the synthetic dataset numerically, compared to
off-the-shelf solutions, our method provides 40-50% per-
formance gain on the DSSIM error. Also note that, DI*,
i.e. DI trained with our dataset, produces second best re-
sults across almost all the error metrics, demonstrating the
advantage of our ShapeNet intrinsics dataset.

Numerical error metrics may not be fully indicative of
visual qualities, e.g. the naive baseline also produces low
errors for some cases. Figure 4 provides visual comparisons
against ground truths.

For objects with strong specular reflectance, e.g. cars,

ShapeNet MSE LMSE DSSIM
intrinsics albedo shading albedo shading albedo shading
Baseline 0.0232 0.0153 0.0789 0.0231 0.2273 0.2341
SIRFS 0.0211 0.0227 0.0693 0.0324 0.2038 0.1356

IIW 0.0147 0.0149 0.0481 0.0228 0.1649 0.1367
DI 0.0252 0.0245 0.0711 0.0275 0.1984 0.1454

DI* 0.0115 0.0066 0.0470 0.0115 0.1655 0.0996
Ours 0.0083 0.0055 0.0353 0.0097 0.0939 0.0622

specular 0.0042 0.0578 0.0831

Table 1: Evaluation on our synthetic dataset. For the base-
line, we set its albedo to be the input image and its shading
to be 1.0. The last row lists our specular error.



Input SIRFS IIW DI DI* Our Specular GT

Figure 4: Results for the synthetic dataset. Our baselines
include SIRFS, IIW, Direct-Intrinsics with released model
by the author (DI), and model trained by ourselves on our
synthetic dataset (DI*). The top row of each group is
albedo, and the bottom is shading. The Specular column
shows the ground-truth (top) and our result (bottom). We
observe that specularity has basically been removed from
albedo/shading, especially for cars. Even for the sofa (last
row) with little specular, our method still produces good vi-
sual result. See more results in our supplementary material.

specular reflection violates the Lambertian condition as-
sumed by traditional intrinsics algorithms. These algo-
rithms, SIRFS or IIW, simply cannot handle such specular
components. Learning-based approaches, DI, DI*, or our
method, could still learn from the data and perform better
in these cases. For DI, the network trained on our ShapeNet
category also has significantly better visual quality, com-
pared with their released model trained on the Sintel dataset.
However, their results are blurry, as a consequence from
their deep convolution and deconvolution structures without
our skip layer connections. Our model produces sharper im-

MIT MSE LMSE DSSIM
intrinsic albedo shading albedo shading albedo shading
SIRFS 0.0147 0.0083 0.0416 0.0168 0.1238 0.0985

DI 0.0277 0.0154 0.0585 0.0295 0.1526 0.1328
Ours 0.0468 0.0194 0.0752 0.0318 0.1825 0.1667

Ours* 0.0278 0.0126 0.0503 0.0240 0.1465 0.1200

Table 2: Evaluation on MIT intrinsics dataset.

Input SIRFS DI Ours Ours* GT

Figure 5: Results on the MIT dataset. Ours* is our
ShapeNet trained model fine-tuned on MIT, with data gen-
erated by the GenMIT approach used in DI [20].

ages preserving many visual details, such as boundaries in
the albedo and specular images. Large specular areas on the
body of cars are also extracted well in the specular output
component, revealing the environment illumination. Such
specular areas would confuse earlier algorithms and bring
serious artifacts to albedo/shading.

5.2. MIT Intrinsics Dataset

We also test the performance of our network on the MIT
intrinsics dataset [12]. Unlike our color environment light
model designed for common real-world images, the MIT-
intrinsics dataset uses a lab capture oriented lighting model
with single grayscale directional light source, a scenario
that is not included in our synthetic dataset. The light model
differences lead to dramatic visual differences and cause do-
main shift problems on learning based approaches [20]. We
also follow [20] to fine tune our network on the MIT dataset.

Table 2 lists benchmark errors and Fig 5 provides sample



results for visual comparisons. SIRFS produces the best nu-
merical results, since the pure Lambertian surface reflection
and grayscale lighting setup best fits the assumption of such
prior-based intrinsics algorithms. Direct intrinsics [20] re-
quires fine tuning to reach similar performance. Our model
fine tuned on the MIT dataset produces comparable results
as SIRFS and better than DI finetuned on MIT; in addition,
our results preserve more details compared to DI.

5.3. Real Images

We also evaluate our algorithm on real images as shown
in Figure 6. Although our model is trained on a purely syn-
thetic dataset, it produces better results on real images com-
pared to other algorithms, thanks to the realistic rendering
that simulates the physical effects of diffuse and specular
reflection well and to the generalization properties of our
task. Our network produces good quality results on objects
never included in our dataset, such as mouse, toy and fruits.
In many results such as the car, mouse and potato, specu-
lar highlights are correctly estimated, and the correspond-
ing albedo maps are recovered with correct colors. Note
that highlight pixels could be so bright that no diffuse col-
ors are left in the input pixels, essentially invalidate many
chroma based solutions. Finally, we apply our model to
videos frame by frame, and obtain coherent results with-
out any constraints on temporal consistency. Please see our
videos and material editing results in supplementary mate-
rials.

6. Cross-category generalization
Our ShapeNet intrinsics dataset provides semantic cat-

egory information for each object, allowing in-depth anal-
ysis for cross-category performance analysis of our learn-
ing based intrinsic image decomposition task. We conduct
category-specific training of our network on 4 individual
categories which have more than 3,000 objects each: car,
chair, airplane and sofa. We evaluate the network on the en-
tire dataset as well as these 4 categories. All these networks
are trained with the same number of iterations regardless the
number of training data.

Table 3 shows the test performance on individual cate-
gories. For almost all the categories, training on the specific
dataset produces the best decomposition results on that cat-
egory. This result is not surprising, as the network always
performs the best at what it is trained for. Training with all
the datasets leads to a small prediction error increase, at less
than 0.02 in the DSSIM error.

Surprisingly, on an input image of an object category
(e.g. car) that has never been seen during training (e.g.
chairs), our network still produces reasonable results, with
the DSSIM error on-par or better than existing works that
designed for general intrinsic tasks (Table 1). Figure 7
shows sample cross-category training and testing results:

All models produce reasonable results, confirming cross-
category generalization of those models.

Analysis on generalization. Our image-to-image re-
gression network always produces the same physical com-
ponents: albedo, shading and specular maps, unlike classi-
fication networks with semantic labels. Although objects in
different categories have dramatically different shapes, tex-
tures, and appearances, those components have the same
physical definitions and share similar structures. Many
those commonalities are widely used in previous intrinsics
algorithms,e.g. shading is usually smooth and grayscale;
albedo contains more color variations and specular is sparse
and of higher contrast.

Some properties maintain across a certain categories.
For example, the Chair and Sofa categories share similar
texture (textile and wood), similar albedo features, and sim-
ilar shapes, thus their cross-category predictions on all three
output channels transfer well.

We also observe non-symmetry in Table 3: e.g. the net-
work trained on Car produces good results on Airplane,
while the network trained with Airplane has relative larger
error on Car. This is related to the within-category varia-
tions: the car category has more variations in both shapes
and textures, providing richer variations that lead to bet-
ter generalization. This result can also be observed in the
benchmarks on the ALL dataset, where the Car-category
network produces the best results except the general ALL-

Albedo
ALL Car Chair Airplane Sofa

ALL 0.0939 0.1014 0.0988 0.0893 0.0716
Car 0.1134 0.0808 0.1379 0.1057 0.1002

Chair 0.1181 0.1578 0.0911 0.1166 0.0835
Airplane 0.1201 0.1410 0.1338 0.0757 0.0954

Sofa 0.1131 0.1348 0.1101 0.1067 0.0663
Shading

ALL Car Chair Airplane Sofa
ALL 0.0622 0.0685 0.0549 0.0596 0.0491
Car 0.0687 0.0579 0.0692 0.0683 0.0592

Chair 0.0772 0.1008 0.0561 0.0740 0.0548
Airplane 0.0776 0.0936 0.0738 0.0481 0.0629

Sofa 0.0721 0.0877 0.0594 0.0697 0.0460
Specular

ALL Car Chair Airplane Sofa
ALL 0.0831 0.0866 0.0714 0.1021 0.0730
Car 0.0953 0.0745 0.0962 0.1214 0.0854

Chair 0.0982 0.1162 0.0719 0.1205 0.0800
Airplane 0.1019 0.1115 0.0980 0.0871 0.0939

Sofa 0.0984 0.1115 0.0800 0.1238 0.0673

Table 3: Cross-category DSSIM evaluation. Each row cor-
responds to a model trained on the specific category, and
each column corresponds to the result evaluated on the spe-
cific category. Reasonably almost all of the lowest errors
show up on the diagonal except the shading for chairs.
Category-specific training gives better results on the spe-
cific category, while the results in the cross-category setting
are still comparable and promising.
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Figure 6: Evaluation on real world images. The first column contains input image (top) and our specular prediction (bottom).
For the group of results of an image, the top row gives the predicted albedo and the bottom row gives the shading. We
observe that: 1) DI* trained on our dataset produces better results than the publicly released model DI; however, they are still
blurry and lose fine details. 2) SIRFS produces erroneous albedo prediction for cases when specular is strong, as specular
reflectance is not assumed by SIRFS.

Albedo Shading Specular
Car Chair Airplane Sofa Car Chair Airplane Sofa Car Chair Airplane Sofa

Car 0.0808 0.1379 0.1057 0.1002 0.0579 0.0692 0.0683 0.0592 0.0745 0.0962 0.1214 0.0854
Car-Chair 0.1157 0.1303 0.1182 0.0954 0.0769 0.0678 0.0743 0.0598 0.0833 0.0907 0.1215 0.0882
Chair-Car 0.1311 0.1111 0.1125 0.0929 0.0873 0.0582 0.0711 0.0573 0.1089 0.0736 0.1235 0.0810

Chair 0.1578 0.0911 0.1166 0.0835 0.1008 0.0561 0.0740 0.0548 0.1162 0.0719 0.1205 0.0800
Airplane 0.1410 0.1338 0.0757 0.0954 0.0936 0.0738 0.0481 0.0629 0.1115 0.0980 0.0871 0.0939

Airplane-Sofa 0.1502 0.1324 0.0855 0.0938 0.0940 0.0719 0.0546 0.0609 0.1104 0.0932 0.0916 0.0894
Sofa-Airplane 0.1349 0.1149 0.1032 0.0723 0.0954 0.0628 0.0703 0.0510 0.1129 0.0829 0.1151 0.0763

Sofa 0.1348 0.1101 0.1067 0.0663 0.0877 0.0594 0.0697 0.0460 0.1115 0.0800 0.1238 0.0673

Table 4: Cross-category decoder fine-tuning results. We freeze the encoder component and fine-tune the decoder components on the
cross-category setting, to diagnose the important of encoder. Car-Chair stands for the model first trained on cars and then fine-tuned on
chairs. Results show that fine-tuning decoder would not bring much performance improvements, if the encoder is trained biasedly. We
also observe that cross-category fine-tuning makes little difference when evaluation on a third category, e.g. Car-Chair on Sofa performs
similarly to Car on Sofa.
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Figure 7: Cross-category comparison. Training on one spe-
cific category produces the best result when tested on ob-
jects from the same category. Categories with similar ap-
pearance also share similar results, e.g. sofas tested on the
model trained on chairs. Dissimilar categories might pro-
duce results with artifacts, e.g. chairs tested on the model
trained on airplanes.

network.

We test the role of our encoder and decoder in our image-
to-image regression task, and verify which part is more crit-
ical for cross-category generalization. After training on
a specific category, we freeze the encoder and fine tune
the decoder on another category, e.g. we finetune the car-
trained model on chairs, with the encoder fixed. The en-
coder features cannot be changed and we can only mod-
ify the way the decoder composes them. Table 4 shows

Figure 8: Image based appearance editing through intrinsic
layers. The first and third row show the edited albedo and
specular, by modifying results from Figure 6. The second
and fourth row show the reconstructed images, delivering
natural appearance in a scene.

.

the results on fine-tuned models. We observe that finetun-
ing the decoder brings very limited improvement on the
dataset it is fine tuned on, indicating that the encoder fea-
tures are crucial to learning the decomposition. That fact
that the model trained on ALL categories produces similar
errors to category-specific models shows that the encoder of
our model is able to capture both category-dependent and
category-independent features.

7. Application

Figure 8 shows material editing examples based on our
intrinsics results in Fig 6. We can recolor the diffuse albedo
map to simulate a different color paint on the car, while
preserving the shading and specular highlights. By blur-
ring the specular component and changing its scale, we can
also change the appearance of the car from highly specular
to matte. These effects are hard to achieve on the original
image but easily done on intrinsic layers without artifacts.

8. Conclusion
We reformulate the intrinsic image problem by introduc-

ing a specular term and solve this non-Lambertian intrin-
sics problem with a deep learning approach. A large scale
training dataset with realistic images is generated using
physically based rendering on the ShapeNet object repos-
itory. Our model consistently outperforms the state-of-
the-art both visually and numerically, demonstrating cross-
category generalization. Non-Lambertian intrinsics greatly
extends Lambertian intrinsics to a much wider range of real
images and real applications such as albedo and specular
editing.
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1. Network
We propose an encoder-decoder CNN for intrinsic im-

age decomposition. The basic network structure is shown
in Figure 1. Figure 1 shows the feature size in each en-
coder/decoder layer. The network design is mirrored with
symmetric feature sizes for the encoder and the decoder, as
well as 3-channel RGB input and output intrinsic compo-
nents (256 × 256 × 3). To keep visual details and produce
sharp outputs (e.g. CNNs as used by Direct Intrinsics [5]
usually produce blurry results), we link early features in
encoder layers to corresponding decoder layers of the same
size (red arrows in the figure). Therefore, we call our net-
work Mirror-Link CNN.

We build our network with simple layers. For the en-
coder, we only use a convolutional layer with 3 × 3 ker-
nel and stride 2 to extract features for each level (every

Figure 1: Network Structure.

conv layer is followed by BN and ReLU). For the decoder,
we first up-sample the previous layer’s feature maps (un-
necessary for the first decoder layer), and then concatenate
them with their encoder counterpart. After that, features are
passed through a Conv(3× 3)-BN-ReLU sequence.

We use shared encoder and separate decoders, since in-
trinsic components (albedo, shading and specular) are not
independent of each other. To further strengthen the cor-
relation between albedo, shading and specular, we link the
features across decoders (blue arrows in the figure).

Some other networks use the same idea of skip links, e.g.
U-Net [7] and Deep Reflectance Map [6]. However, our
network is different from theirs in following three aspects:
We target a different and more complex image-to-image re-
gression problem; our network is strictly symmetric in fea-
ture maps, including input and output; we have three out-
puts/decoders with a shared input/encoder.

We evaluate many variations of the network, including:
1) independent Mirror-Link network for albedo, shading
and specular, 2) shared encoder without cross links (blue ar-
rows) between decoders; 3) different numbers of skip links
(red arrows) between corresponding encoder and decoder.
Table 1 lists benchmark errors.

Analysis. By comparing Independent and Shared En-
coder networks, we observe that although the latter contains
fewer parameters, the performance is comparable for albedo
and shading, even better for specular. Therefore, we con-
sider a single shared encoder sufficient for extracting fea-
tures for all 3 outputs.

As a multi-task CNN, there are some correlations among
our 3 intrinsic components. Therefore, in Mirror-Link net-
work, we further strengthen such correlations by cross links
in the decoders. The performance is improved significantly.

To evaluate the skip links from the encoder to the de-
coder, we test Skip Link-3 and Skip Link-0. In Skip Link-

1



Albedo Shading Specular
MSE LMSE DSSIM MSE LMSE DSSIM MSE LMSE DSSIM

Independent 0.0116 0.0469 0.1183 0.0059 0.0111 0.0667 0.0064 0.0845 0.1179
Shared Encoder 0.0122 0.0503 0.1210 0.0069 0.0124 0.0746 0.0058 0.0767 0.1077
Mirror-Link 0.0083 0.0353 0.0939 0.0055 0.0097 0.0622 0.0042 0.0578 0.0831
Skip Links - 3 0.0127 0.0527 0.1282 0.0079 0.0149 0.0815 0.0059 0.0858 0.1152
Skip Links - 0 0.0226 0.0794 0.1705 0.0118 0.0225 0.0977 0.0084 0.1234 0.1448

Table 1: Numeric comparison for variant network structures. Independent uses 3 independent encoder-decoder networks for
albedo, shading and specular, nothing is shared. Shared Encoder uses the shared encoder and separate decoders, but without
cross links(blue arrows in the figure) between decoders. Skip Link-0 is the network without skip links (red arrows) between
encoder and decoder. Skip Link-3 uses 3 links in the middle. Mirror-Link contains all links and is the model we used in this
paper. We use the same metrics as [5], where MSE is a scale-invariant version.

3, we remove 3 links outside while keep 3 in the middle.
In Skip Link-0, we remove all the skip links (red arrows in
the figure). We observe that skip links improve the perfor-
mance.

2. Loss Functions
Similar to [5], a scale-invariant MSE(SMSE) loss, com-

bined with standard MSE loss, is employed in our work.
The SMSE first scales the predicted output and then com-
pares MSE with the groundtruth.

SMSE(X,Xgt) = MSE(αX,Xgt) (1)

α = argminMSE(αX,Xgt) (2)

Previous works assume that I = A × S, making the
scaling ambiguity in αA and 1

αS. In our formulation for
non-Lambertian objects as I = A × S + R, we also have
the same scaling ambiguity for A × S. Thus, we apply the
scale-invariant loss for albedo and shading. However, for
the specular R, either scale-invariant (αR) or shift-invariant
(α+R) would bring different patterns to A× S. Thus, we
simply apply MSE loss for the specular output. Since we
only have ground-truth for objects, we use masks for back-
ground pixels for computing the loss and back-propagating
gradients.

For albedo and shading, we use

EA,S = 0.95× SMSE + 0.05×MSE, (3)

and for specular, we use:

ER = MSE. (4)

3. Rendering Pipeline
There are about 57, 000 models in the ShapeNet core

database [3]. Most of them have materials and textures. All
these models are normalized and aligned to a unit bounding

box. Due to computing resource limitations, we only render
31, 072 models, more than a half of the database.

A physics-based open source render Mitsuba [4] is em-
ployed for the rendering task. It can directly render the input
image and the groundtruth albedo. For the shading compo-
nent, we replace materials with pure diffuse white for ren-
dering. For the specular, we set the diffuse to 0 and keep the
specular for rendering.

Models are rendered under all 98 environment maps we
have. Viewpoints are randomly assigned on the upper hemi-
sphere for the object in each environment map. We use a
low discrepancy Halton sequence to generate random view-
points to keep them uniform yet random in the distribution.

We use path tracing to render images. To reduce the
rendering time, we render albedo, shading and specular
(as well as an object mask) and synthesize the image by
I = A×S +R. It saves us 30% of rendering time. Albedo
and mask rendering is simple and fast, while image, shading
and specular require many more samples for path tracing.

4. More Results
Pages 3-6 show some results from our synthetic testing

set. Groundtruth (reference) is included for visual compar-
isons. Figure 2 shows results on real images downloaded
from the Internet. Results from Direct Intrinsics [5] (both
their released model and the model trained on our dataset)
and SIRFS [1] are provided for visual comparisons.
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Input Ours DI* DI SIRFS Input Ours DI* DI SIRFS

Figure 2: Real image results from our method, SIRFS, Direct Intrinsics(DI) and Direct Intrinsics model trained on our
dataset(DI*). The first column shows input image(top) and specular solved by our model(bottom). Other columns are
albedo(top) and shading(bottom) results. We will publish our trained model as well as the synthetic dataset. For more results,
please try our released model.



5. Another synthetic evaluation

We build an object-level intrinsic image dataset based on
ShapeNet. Objects are rendered within real captured envi-
ronment maps to approximate realistic illuminations. For
more realistic and advanced effects such as occlusion and
inter-reflection, rendering objects within 3D scenes is pre-
ferred. Figure 3 shows a photo-realistic rendered scene [2].
Unfortunately, there is no existing large-scale public real-
istic scene database for generating training data. However,
we can still make use of those limited number of public 3D
scenes to generate groundtruth data for evaluation.

Figure 3: A rendered kitchen scene.

5.1. Pepper

The red and orange peppers on the table are rendered.
There are sharp specular highlights, as well as inter-
reflections from nearby objects. Figure 4 shows sample
results. Table 2 lists estimation errors. Although there is
no similar object in our training set, our method produces
acceptable results especially for shading and specular.

MSE LMSE DSSIM
albedo shading albedo shading albedo shading

Pe
pp

er
-1 SIRFS 0.0078 0.0110 0.1294 0.0179 0.3287 0.0959

DI 0.0083 0.0093 0.0909 0.0091 0.3345 0.0530
Ours 0.0058 0.0030 0.0883 0.0040 0.3219 0.0446

specular 0.0012 0.0162 0.0776

Pe
pp

er
-2 SIRFS 0.0032 0.0255 0.1283 0.0146 0.3491 0.1054

DI 0.0033 0.0147 0.0940 0.0052 0.3293 0.0760
Ours 0.0022 0.0023 0.0789 0.0017 0.3302 0.0544

specular 0.0009 0.0114 0.0636

Pe
pp

er
-3 SIRFS 0.0037 0.0033 0.1322 0.0035 0.1901 0.0308

DI 0.0064 0.0077 0.0743 0.0055 0.2037 0.0682
Ours 0.0006 0.0009 0.0963 0.0016 0.1789 0.0165

specular 0.0002 0.0090 0.0300

Table 2: Error comparison for peppers.

Input GT Ours DI SIRFS Specular

Figure 4: Visual results for the red pepper. The last column
shows the groundtruth specular(top) and ours(bottom).

5.2. Kettle

The green metal kettle is also rendered for evaluation.
In this case, the specular is not as sharp as the pepper, but
with larger area. Figure 5 shows the visual results. Our al-
gorithm produces reasonable specular and shading. For the
albedo component, although our model failed to fill the cor-
rect color for the holes on the specular area, it still produces
better results than others. Table 3 shows the numeric errors.

Input GT Ours DI SIRFS Specular

Figure 5: Visual results for the green kettle. The last column
shows the groundtruth specular(top) and ours(bottom).



MSE LMSE DSSIM
albedo shading albedo shading albedo shading

K
et

tle
-1

SIRFS 0.0076 0.0128 0.0890 0.0171 0.2912 0.0943
DI 0.0112 0.0679 0.1275 0.0576 0.2882 0.1945

Ours 0.0027 0.0063 0.0310 0.0103 0.2297 0.0737
specular 0.0015 0.0255 0.0439

K
et

tle
-2

SIRFS 0.0060 0.0307 0.0777 0.0190 0.2851 0.1592
DI 0.0042 0.0717 0.0508 0.0354 0.3295 0.2329

Ours 0.0027 0.0101 0.0326 0.0091 0.2049 0.1254
specular 0.0009 0.0100 0.0273

Table 3: Error comparison for the kettle.

6. Intrinsic Video
We apply our model to each frame in a video, without

any temporal consistency constraints across frames. It pro-
duces stable and reasonable results.
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