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Fig. 1. Visualizations under natural lighting of four captured 1k resolution SVBRDFs estimated using our deep inverse rendering framework. The leather
material (left) is reconstructed from just 2 input photographs captured with a mobile phone camera and flash, while the other materials are recovered from 20
input photographs.

In this paper we present a unified deep inverse rendering framework for
estimating the spatially-varying appearance properties of a planar exemplar
from an arbitrary number of input photographs, ranging from just a single
photograph to many photographs. The precision of the estimated appearance
scales from plausible when the input photographs fails to capture all the
reflectance information, to accurate for large input sets. A key distinguishing
feature of our framework is that it directly optimizes for the appearance
parameters in a latent embedded space of spatially-varying appearance, such
that no handcrafted heuristics are needed to regularize the optimization.
This latent embedding is learned through a fully convolutional auto-encoder
that has been designed to regularize the optimization. Our framework not
only supports an arbitrary number of input photographs, but also at high
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resolution.We demonstrate and evaluate our deep inverse rendering solution
on a wide variety of publicly available datasets.
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1 INTRODUCTION
Estimating the surface reflectance properties of a spatially-varying
material is a challenging problem. Methods based on inverse ren-
dering (e.g., [Dong et al. 2014; Hui et al. 2017]) can obtain accurate
estimates for a sufficiently large number of input photographs. How-
ever, if the number of photographs is too low, such inverse rendering
methods fail to produce plausible results. Recently, a number of tech-
niques have been presented that, leveraging recent advances in deep
learning, focus on achieving plausible results from just a single im-
age [Deschaintre et al. 2018; Li et al. 2017, 2018a,b; Ye et al. 2018].
However, these methods fail to reproduce reflectance features that
are ambiguous and/or not visible in the single input photograph.
For example, specular features that are not excited by the incident
lighting in the input photograph can only be inserted based on
learned heuristics. Adding one or more photographs that provide
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additional cues on the missing or ambiguous features could greatly
improve the appearance reconstruction. However, it is unclear how
such deep learning based methods can be extended to multiple input
images.
In this paper we propose a unified framework for estimating

high resolution surface reflectance properties of a spatially-varying
planar material sample from an arbitrary number of photographs
(Figure 1). The precision of the estimated spatially-varying bidi-
rectional reflectance distribution functions (SVBRDFs) gracefully
scales from “plausible” approximations when the input images fail
to reveal all the reflectance details (e.g., for a single input photo-
graph) to “accurate” reproductions for sufficiently large sets of input
images. To achieve this goal, our method, named deep inverse render-
ing, combines deep learning and inverse rendering in a flexible and
easy to implement framework that performs the inverse rendering
optimization in a learned latent space characterized by a fully con-
volutional auto-encoder [Hinton and Salakhutdinov 2006] which
models the space of SVBRDFs. The optimization itself is driven by
the rendering error on the reflectance property maps corresponding
to the latent vector which is updated via backpropagation through a
differential rendering layer. Optimizing the latent vector, instead of
the reflectance property maps, constrains the solution to lie in the
modeled SVBRDF space. However, to facilitate optimization, careful
design of the latent space is needed.

Batch normalization [Ioffe and Szegedy 2015] is the de-facto stan-
dard strategy for regularizing convolutional neural networks, in-
cluding auto-encoders. However, the goal of our SVBRDF auto-
encoder differs from traditional convolutional auto-encoders which
are trained to minimize the reproduction differences between the
input and output. Instead, we desire an SVBRDF auto-encoder that
defines a latent space suitable for inverse rendering optimization.
We argue and show that batch normalization aversely affects the
quality of gradients obtained by backpropagating the rendering
loss through the decoder; we therefore omit batch normalization
on the decoder. Furthermore, we further improve the robustness of
the optimization in the latent space by introducing an additional
smoothness loss during the auto-encoder training such that small
changes in the latent vector correlate to small changes in the de-
coded SVBRDF.
While encoder batch normalization and the smoothness con-

straint improve robustness with respect to optimization, our deep
inverse rendering still requires a plausible SVBRDF as a starting
point, especially in the case of a few input photographs, since the
auto-encoder only models the space of SVBRDFs, not its plausibility.
We therefore opt to use the plausible SVBRDF estimates provided
by prior single image convolutional neural network solutions [De-
schaintre et al. 2018; Li et al. 2018a] as a starting point. In Section 5
we provide a probabilistic interpretation on the role of the starting
point.
An advantage of using a fully convolutional auto-encoder for

modeling the embedded latent space is that we can easily support
high resolution SVBRDFs by simply expanding the resolution of
the latent feature maps; this does not require any retraining of the
auto-encoder.

We demonstrate our deep inverse rendering solution on a wide va-
riety of SVBRDFs from different publicly available SVBRDF datasets,

as well as on captured photographs of spatially-varying materials.
Furthermore, we show that, for single input photographs, our solu-
tion improves the quality of the estimated SVBRDFs compared to
prior learning-based approaches [Deschaintre et al. 2018; Li et al.
2018a].

In summary, our deep inverse rendering solution for recovering
SVBRDFs:

(1) can operate with an arbitrary number of input photographs,
ranging from as few as one to many;

(2) is not limited to a fixed input and output resolution; and
(3) improves the quality of SVBRDFs estimated from single pho-

tograph inputs compared to prior work, especially when the
target material falls outside the training dataset.

2 RELATED WORK
The ubiquitous availability of cheap digital cameras presents an
opportunity for non-expert users to employ image-driven model-
ing tools formerly restricted to specialized labs. In the past decade,
several advances have been presented for bringing appearance mod-
eling of spatially-varying materials to the masses. A key prerequisite
for such appearance modeling methods is that they need to be ro-
bust to suboptimal choices in the acquisition parameters. Therefore,
we focus this overview of related work on methods that endeavor
to simplify the acquisition process and that rely on a lightweight
acquisition setup using consumer cameras. We refer to the excellent
overviews of Dorsey et al. [2008] and Weinmann and Klein [2015]
for a detailed overview of general appearance modeling techniques.

Multi-Image Heuristics-based Appearance Modeling. A first class
of methods aims to model the appearance as accurately as possi-
ble, while emphasizing ease of acquisition and simplicity of the
acquisition process.
Riviere et al. [2016] record a video of a spatially-varying sam-

ple using a mobile phone and lit by a flash light. They fit surface
normals and a BRDF per surface point using handcrafted heuristics
to identify specular and diffuse reflections. Hui et al. [2017] also
record a video using a cellphone camera and flash. However, unlike
Riviere et al., they “scan” the surface. Hui et al. iteratively fit sur-
face normals and a dictionary-based BRDF model assuming sparsity.
Palma et al. [2012] recover the spatially-varying appearance from a
video sequence of an object under fixed natural lighting. Similar to
Riviere et al., a heuristic is used to separate and fit the diffuse and
specular reflectance. Dong et al. [2014] estimate surface normals
and reflectance properties for each surface point from a video of a
rotating object under unknown natural lighting by exploiting the
sparsity of strong edges in the incident lighting. This was further
extended Xia et al. [2016] to also recover the shape of the object.

Despite using multiple observations of the scene, these methods
still require regularization due to the limitations of the light-weight
acquisition process, often in the form of handcrafted heuristics or
by assuming sparsity in some domain. Furthermore, these methods
have a hard lower bound on the number of input images for which
a meaningful reflectance estimate can be obtained. In contrast, our
method aims to produce valid SVBRDFs starting from any arbitrary
number of input photographs.
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Single/Few Image Reflectance Modeling. Another class of methods
is designed to reduce the number of input images to a minimum
while recovering a plausible estimate of the material properties.

Aittala et al. [2015] recover the reflectance properties of texture-
like materials from just two photographs (one with flash and one
without) by exploiting that each local region is statistically similar
(i.e., stationary), while receiving lighting from different directions
under the flash lighting. Xu et al. [2016] also exploit spatial rela-
tions and recover material properties from just two photographs
from a near-field perspective camera. While originally designed
for homogeneous materials, it can also be applied to piece-wise
spatially-varying materials. Zhou et al. [2016] present a general
framework that also exploits spatial relations and sparseness in
basis BRDF representations. Their method can recover the SVBRDF
(excluding surface normals) ranging from just one image assuming
a piece-wise spatially-varying material, to more detailed spatial
variations from multiple input images. The above methods all make
strong assumptions on some form of spatial sparseness of the mate-
rial. In contrast, our method relies on learned features that encode
spatial relations (not necessarily sparse).

Learning-based Appearance Modeling. Li et al. [2017] proposed
a novel self-augmentation training strategy that only requires a
small labeled training set of measured SVBRDFs in conjunction with
a large unlabeled set of regular photographs of spatially-varying
materials for learning a material-class specific convolutional neural
network that can infer the reflectance properties of a planar material
sample from a single photograph under unknown natural lighting.
Ye et al. [2018] improve on this, and remove the need for labeled
training data altogether.

Deschaintre et al. [2018] and Li et al. [2018a] estimate reflectance
properties using a convolutional neural network from a single pho-
tograph lit by flash lighting. Both solutions differ in their network
architecture. Deschaintre et al. consider both global information
provided by local lighting as well as texture detail. Li et al. add a
densely connected conditional random field post-processing step
to further enhance the estimated reflectance parameters. In this
paper, we will use the single photograph estimation networks of
Deschaintre et al. [2018] and of Li et al. [2018a] to bootstrap our
deep inverse rendering optimization.
Li et al. [2018b] introduced a deep learning based solution for

recovering shape and spatially-varying reflectance from a single
image. Key to their method is a cascading network structure to
iteratively refine the solution, and a rendering layer that predicts
the next “bounce” of indirect lighting.
While powerful, the above deep learning solutions are designed

for a single input photograph, and it is not straightforward to ex-
tend them to handle multiple input images. One strategy would
be to fix the number of input photographs beforehand, as imple-
mented by Xu et al. [2018] in the context of the related problem
of image-based relighting. A more flexible solution was presented
by Kim et al. [2017] who reconstruct a homogeneous BRDF from
multiview observations using a multi-level fully connected deep
network design. Key to their method is the inclusion of a novel
“moment pooling layer” that aggregates the features from multiple
observations. However, their solution is limited to homogeneous

BRDFs. All of the above deep learning based appearance model-
ing methods use a (convolutional) neural network to directly infer
the reflectance properties from the input photographs. In contrast,
we follow a more traditional inverse rendering approach guided
by learned features. While computationally more expensive dur-
ing estimation, it also inherits the flexibility of optimization-based
solutions with respect to the number of input photographs.
Closest related to deep inverse rendering is the method of Ait-

tala et al. [2016] who estimate spatially-varying surface normals and
reflectance properties of a planar stationary material sample from
a single photograph lit by flash lighting. They perform an inverse
rendering approach driven by a powerful learned texture descrip-
tor [Gatys et al. 2015] to softly compare the predictions. Similar to
Aittala et al., we also combine deep learning and inverse rendering.
However, whereas Aittala et al. project rendered predictions (images)
into a general texture-feature space, we directly optimize the fea-
tures of the reflectance parameter maps in a learned embedding of
SVBRDFs.

Optimizing with Auto-encoders. Kang et al. [2018] learn illumina-
tion patterns for efficient capture of surface reflectance properties.
Key to their method is an asymmetric auto-encoder that that features
a linear non-negative encoder that corresponds to the acquisition
lighting, and a non-linear decoder that maps the measurements
to reflectance information, which in turn is fitted to an analytical
BRDF model. From the perspective of inverse rendering, Kang et al.’s
approach can be seen as using deep learning to provide a starting
point for the optimization. We do not only rely on deep learning to
provide a starting point, but also to drive the optimization.
Choi et al. [2017] model the space of multispectral images us-

ing an auto-encoder to aid in reconstructing multispectral images
from compressive hyperspectral measurements. Similar to us they
solve the reconstruction problem by directly optimizing in the latent
space. However, to regularize the reconstruction a cycle-loss term
is introduced (enforcing that the encoding of the decoded latent
variable is valid) as well as a total variation regularizer that favors
sparse image gradients. Calian et al. [2018] estimate a light probe
from a single image of a face. Similar to Choi et al. , Calian et al. do
not only use the latent space for representing the target (i.e., envi-
ronment lighting), but also for modeling an additional optimization
regularization term. We take inspiration from these methods and
also optimize in the latent space. However, we do not add hand-
crafted heuristics (such as gradient sparseness) to regularize the
optimization, but instead adjust the latent space to be more robust
to optimization. Explicitely including a regularization term requires
careful balancing of both terms. Tuning this balance is non-trivial
and likely dependent on the properties and quantity of input images.

3 OVERVIEW
Preliminaries. Our goal is to estimate the reflectance properties

of a spatially-varying material from an arbitrary number of pho-
tographs. We assume that the material sample is planar with the
exception of small-scale surface details that can be modeled by a
normal map. Furthermore, we assume that the surface reflectance at
each surface point can be well represented by the Cook-Torrance mi-
crofacet BRDF model using the GGX distribution as the microfacet
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Fig. 2. Overview of the deep inverse rendering framework. The core of our system is an SVBRDF auto-encoder specifically designed for deep inverse rendering.
Key to deep inverse rendering is the optimization of the appearance parameters directly in the latent embedded space of spatially-varying appearance, driven
only by the rendering loss of the decoded SVBRDF to the input photographs (i.e., without any additional handcrafted regularization terms). To bootstrap the
optimization, we use an existing single image SVBRDF estimation network [Deschaintre et al. 2018] that estimates the most plausible SVBRDF from a single
top view photograph. Finally, we perform a refinement post-processing step to reintroduce fine details not encoded in the latent space.

normal distribution [Walter et al. 2007]. The reflectance of each
surface point p is characterized by: a surface normal n(p), diffuse
albedo kd (p), specular albedo ks (p), and a monochrome specular
roughness α(p). Furthermore, we assume that the photographs {Ii }i
of the material are lit by a point light source (approximately) co-
located with the camera. We impose no restrictions on the camera
locations for each photograph although we try to keep the distance
to the sample approximately constant. Furthermore, we require that
at least one photograph I0 is captured from approximately normal
incidence. For each photograph Ii we assume that the internal and
external camera intrinsics Ci are known and that each photograph
is radiometrically linearized and rectified to the top view; we will
define all material property maps with respect to the top view. Our
method supports both high-dynamic range as well as 8-bit (linear)
low dynamic range input photographs.

Deep Inverse Rendering. Our deep inverse rendering framework
uses the classic inverse rendering approach and formulates the
estimation of the reflectance parameters s = (n,kd ,α,ks ) as a min-
imization that attempts to minimize the differences, according to
some loss function L(·, ·), between the photographs {Ii }i and the
rendering1 R(s,Ci ) of the reflectance parameters and the camera
(and light source) parameters Ci :

argmin
s

∑
i

L(Ii ,R(s,Ci )). (1)

For the loss function L(·, ·), we follow Deschaintre et al. [2018]
and use the L1 distance on log-encoded pixels values to reduce the
impact of high intensity specular pixel values:

L(x,y) = | |loд(x + 0.01) − loд(y + 0.01)| |1. (2)

However, unlike traditional inverse rendering methods, we do not
directly optimize the reflectance parameters s , but instead find a
solution z in a latent space:

argmin
z

∑
i

L(Ii ,R(D(z),Ci )). (3)

A key difference between Equations (1) and (3) is that the former
optimizes the reflectance parameters s per pixel, whereas the latter
1We clamp the rendered pixel values to [0, 1] if the input photographs are low dynamic
range.

optimizes the whole image with respect to the latent vector z. The
latent space embeds the relevant properties and relations of the
space of SVBRDFs and serves to regularize the optimization. In
our solution we model this latent space using a fully convolutional
auto-encoder that consists of an encoder E(·) that transforms an
SVBRDF s to its corresponding latent vector z, and a decoder D(·)
that translates the latent vector z to the corresponding SVBRDF s:

z = E(s), (4)
s = D(z). (5)

The exact details of the SVBRDF auto-encoder are discussed in Sec-
tion 4. Figure 2 summarizes our deep inverse rendering framework.

Discussion. Our choice for inverse rendering in a learned space,
instead of directly learning a direct inference network, is motivated
by practical and theoretical constraints.

On the practical side, there is the challenge of dealing with a vari-
able number of input photographs, each of which might be recorded
from different viewpoints. Unless a specially designed setup that
repeats the same acquisition pattern is used, the viewpoints and/or
lighting directions are unknown before acquisition. This poses a sig-
nificant challenge for deep learning strategies such as convolutional
neural networks used in prior work [Deschaintre et al. 2018; Li et al.
2018a] as these networks require such knowledge at training time.
By embedding the deep learning component inside a classic inverse
rendering pipeline, we also inherit the flexibility of inverse render-
ing when it comes to handling a wide variety of input conditions. In
addition, it enables our framework to handle acquisition parameters
unknown during training. Furthermore, performing inverse render-
ing in a learned space also avoids the need for fragile handcrafted
regularizers to handle underconstrained and ambiguous conditions.

On the theoretical side, from the perspective of appearance mod-
eling, one can view learning an inference network as moving the
appearance optimization to a precomputation phase. During train-
ing the network is optimized to minimize the error over the whole
training set. Consequently, it is possible that there is a difference in
the accuracy between the different training samples. Furthermore,
no guarantee can be made for exemplars outside the training set.
Hence, on an individual exemplar basis, the inference networkmight
not reach the best solution. Our deep inverse rendering framework
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Fig. 3. Auto-encoder network structure.

does not train an inference network, and only uses the learned space
to regularize the optimization. Consequently, it is therefore better
equipped to deal with exemplars not seen during training.

4 SVBRDF AUTO-ENCODER FOR DEEP INVERSE
RENDERING

Network Architecture. The goal of the auto-encoder is to provide
a reduced latent space to perform the optimization in, while at the
same time being able to faithfully reproduce the intricate spatial
variations observed in spatially-varying materials. As such, we use a
standard auto-encoder architecture that takes 256 × 256 reflectance
property maps s = (n,kd ,α,ks ) as input and reduces them to 8 ×
8 resolution feature maps with a feature length of 512. Figure 3
summarizes the full configuration and convolution filter sizes.

Training Loss Function. We use the same training dataset as De-
schaintre et al. [2018]. We explicitely do not use a larger training
set to better demonstrate that our deep inverse rendering solution
can handle a wider range of spatially-varying materials, as well as
to provide a fair comparison to prior work.
The training loss function is a sum of two terms:

Ltrain = Lmap +
1
9Lr ender , (6)

where Lmap is the L1 loss on the reflectance maps, and Lr ender
is the L1 log loss on 9 visualizations of the material (similar to the
optimization loss (Equation (2)). We follow Deschaintre et al. [2018]
and select these 9 images from two sets of distributions. 3 images
are selected with independently sampled light and view directions
from a cosine weighted distribution over the upper hemisphere. The
final 6 images are selected by sampling the lighting directions from
the cosine distribution, and setting the view direction to the mirror
direction. The viewpoint is randomly selected on the material, and
the (log) distance of the camera and lighting are independently
sampled from a normal distribution with mean 0.5 and standard
deviation 0.75 (assuming a 2 unit square material sample). We will
show in Section 7 that the combination of both loss terms yields
more stable SVBRDF recovery than either of the terms separately.

Batch Normalization vs. Inverse Rendering. A standard practice for
convolutional neural networks is to apply batch normalization [Ioffe
and Szegedy 2015] to each convolutional layer with as goal to im-
prove performance and stability in training. However, another fea-
ture of batch normalization is that it also acts as a model regularizer.
Batch normalization normalizes each feature map for each training
batch; a global scale and bias factor are also trained over the model
to ensure that the average mean and scale remain the same. In ef-
fect, batch normalization penalizes features that occur infrequently

Fig. 4. Deep inverse rendering with different auto-encoder configurations
for a single input photograph. The auto-encoder without any batch normal-
ization produces noisy results (2nd row) compared to the reference (top row).
In contrast, batch normalization on every layer oversmooths the results
(3rd row). Only applying batch normalization on the last encoder layer (just
before the latent code) better balances details vs noise (4th row). Single-
layer batch normalization with our space smoothness constraint (last row),
producing the most plausible result, with clean maps and more accurate
details in the renderings (cf. region marked in blue).

(e.g., noise). To demonstrate the impact of batch normalization for
SVBRDF estimation, we train two auto-encoders: one without any
batch normalization, and one with a batch normalization on each
convolutional layer. We then use these auto-encoders to optimize
an SVBRDF from a single (top view) photograph (Figure 4). The
result obtained from the auto-encoder without batch normalization
(second row) produces “noisy” reflectance maps. In contrast, the
result obtained from the auto-encoder with batch normalization
(third row) produces “cleaner” reflectance maps. However, we also
observe that these “clean” reflectance maps loose some sharpness;
edge detail and noise are in some sense similar types of features.
To address the loss in edge details, we observe that our goal is

different than that of classic auto-encoders. For our application of
optimizing latent vectors, we desire a decoder that produces good
gradients that capture the details when backpropagated from the ren-
dered images to the latent code. Hence, we posit that applying batch
normalization on the decoder overregularizes the auto-encoder; we
only want to regularize the latent embedded space to better model
the space of SVBRDFs. We demonstrate the validity of our thesis in
Figure 4 (fourth row). The single image estimation using an auto-
encoder without any batch normalization on the decoder exhibits
more details than the full batch normalization auto-encoder, but also
without the noise introduced by the unregularized auto-encoder.
We also experimented with including batch normalization only on
the last layer of the encoder (and none on the decoder), and found
the results to be similar then when using batch normalization on
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Fig. 5. t-SNE visualizations of the learned latent spaces with and without
smoothness loss. With smoothness loss, the resulting latent space is more
continuous.

all layers of the encoder. We therefore, opt for using a single batch
normalization layer (on the last layer of the encoder).

Optimization Space Smoothness. When optimizing the latent code,
we rely on backpropagation of gradients to direct the optimiza-
tion algorithm. These backpropagated gradients are based on the
rendered images, and ideally a small change in appearance in the
rendered images should result in a small change in latent code. With-
out regularization during training, there is no guarantee this will
be the case. Unfortunately, we do not know at training time what
the exact number of input photographs is, nor do we know their re-
spective camera locations, and thus we cannot evaluate the change
in appearance during training. Instead, we apply the stronger con-
straint that a small change in latent code should result in a small
change in the SVBRDF (and vice versa). We achieve this by adding
a smoothness loss function to the training loss:

Lsmooth = λsmooth | |D(z) − D(z + ξ )| |1, (7)
where ξ is a random variable drawn from a normal distribution
with 0.2 variance and zero mean, and λsmooth is a weight to control
the amount of smoothing; we found that λsmooth = 2 works well
in practice. Effectively, this smoothness penalty term attempts to
reorganize the latent space such that nearby latent codes have a
similar decoded SVBRDF. This is illustrated in Figure 5 via t-SNE
visualizations [van der Maaten and Hinton 2008] of the latent spaces
trained with and without smoothness loss. The latent space with
smoothness loss exhibits a more continuous manifold, which is
better suited for interpolation and/or optimization.
A caveat with Equation (7) is that there exists a trivial solution

by expanding the scale of latent space; i.e., scaling up the extend of
latent space is equivalent to reducing the variance of ξ , and and in
the limit case ξ becomes practically equivalent to zero at which point
the decoded SVBRDFs are the same. To fix the scale of the latent
space, we fix the scale to 1 and bias to 0 in the batch normalization
of the latent code. Figure 4 (last row) demonstrates the benefit for
deep inverse rendering, yielding a reconstruction with more details
than without the smoothness loss during training.

High Resolution Auto-encoder. A fully convolutional auto-encoder
has the advantage that we can also encode an input SVBRDF at
high resolution. The resulting latent code will be expanded by the
same ratio. For example, encoding a 1024 × 1024 SVBRDF yields a

32 × 32 × 512 latent code, or 16 times larger than the 8 × 8 × 512
code of a 256 × 256 SVBRDF. Given this larger latent code, we can
decode the SVBRDF again at the input resolution. Hence, our deep
inverse rendering framework can easily operate on high resolution
SVBRDFs.

5 BOOTSTRAPPING
As in many inverse rendering methods, the initialization of the
optimization is essential for obtaining a good result. To better un-
derstand the role of the auto-encoder in the optimization, and thus
the conditions for the initialization, we express deep inverse render-
ing in probabilistic terms. Given a set of input photographs {Ii }i , we
can express inverse rendering as maximizing the conditional proba-
bility of an SVBRDF s as: argmaxs P(s |{Ii }i ). Using Bayes’ theorem
and assuming each Ii is independent, we can rewrite this as:

P(s |{I }i ) = Πi

(
P(Ii |s)P(s)

P(Ii )

)
. (8)

We assume each image is equally likely, and therefore ignore the
image probability P(Ii );

P(s |{I }i ) = Πi (P(Ii |s)P(s)) . (9)

The first probability in Equation (9), P(Ii |s), expresses the probabil-
ity of an image Ii given the SVBRDF s , and it corresponds to (the
corresponding terms in) the fitting loss function. The second prob-
ability, P(s), expresses the probability of the SVBRDF s . When the
number of input images is large, Equation (9) is dominated (and thus
sufficiently constrained) by the rendering loss. Intuitively, many
SVBRDFs can potentially explain the input image Ii , and thus its
probability will be significant for a large portion of the SVBRDF
space. The joint probability of all images is represented by the inter-
section of these probabilities; the more images there are, the more
likely the intersected probability region shrinks in size, and in the
limit it will only peak for a single SVBRDF. Consequently, the role of
P(s) is less important. However, when the number of input images
is low, the conditional probability is significant for a large number
of SVBRDFs, and the role of P(s) as a regularizer becomes more
important. It is tempting to think that this probability is offered
by the auto-encoder. However, this is incorrect. The auto-encoder
only provides a latent embedding of the space of SVBRDFs (i.e., a
model of the space of SVBRDFs); it does not differentiate between
the probability of different embeddable SVBRDFs. However, the
smoothness loss (Equation (7)) compels the training to organize
the latent space such that nearby latent vectors decode to a similar
SVBRDF. Assuming that similar plausible SVBRDFs have a similar
probability, we can approximate P(s) locally as a constant:

P(D(z)) ≈ P(D(z + ξ )). (10)

The smaller ξ themore likely that this approximation holds. This sug-
gests that if the starting point z0 is chosen to fall in the region where
the shape of the distribution is dominated by the rendering loss (i.e.,
P(s) ≈ constant ), then we can expect the optimization to converge
to a good solution. Unfortunately, this implies we would need to
select z0 close to argmaxs P(s |{Ii }i ), which is exactly the probability
we want to maximize in the first place. However, the smoothness
loss attempts to increase the region (i.e. ξ ) for which Equation (10)
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Fig. 6. Deep inverse rendering from two input photographs starting from
different initial starting points. A random starting point (2nd row) is more
likely to generate non-plausible results compared to the reference (top
row). Starting from the SVBRDFs generated by the single image estimation
methods of Deschaintre et al. [2018] (3rd row) and Li et al. [2018a] (bottom
row) produces similar plausible results.

holds, and thus this allows us to relax this condition and instead
maximize an approximate proxy probability.

To bootstrap our optimization, we rely on prior learning-based sin-
gle image SVBRDF estimation methods [Deschaintre et al. 2018; Li
et al. 2018a]. These methods are trained to maximize P(s |I0), which
is an acceptable approximation of P(s |{Ii }i ) for many spatially-
varying SVBRDFs. In practice, we found that our deep inverse ren-
dering method is able to converge to a plausible solution from these
initial SVBRDFs. Figure 6 shows a comparison for a wood material
optimized from 5 input photographs with different initial starting
points: (a) random starting point, (b) from [Deschaintre et al. 2018],
and (c) from [Li et al. 2018a]. For comparison we also show visual-
izations lit from a novel lighting direction. As expected, our method
fails to produce a plausible result from a random starting point,
while achieving a plausible result when started from the single im-
age SVBRDF estimates. Unless noted otherwise, we will use the
method of Deschaintre et al. [2018] to initialize the optimization for
the results shown in the remainder of the paper.

6 DETAIL REFINEMENT
A well known problem with fully convolutional neural encoder-
decoder networks is that the information must pass through a
so-called bottleneck. Unless the modeled space is sufficiently low
dimensional, detail is lost. A common solution in convolutional net-
works is to include skip connections from the encoder to the decoder
to inject the lost details back into the decoding stream. However,
for our particular use of an auto-encoder where the latent space
itself is the main goal, we cannot fall back on skip connections. As
a consequence, our decoded SVBRDFs are less sharp. One potential
solution would be to increase the size of the latent code. However,
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Fig. 7. A comparison of SVBRDFs recovered from 5 input photographs,
before and after refinement, visualized from novel views. The visualizations
without refinement lack sharpness and detail. Refinement reintroduces
many of the missing details such as the speckle pattern in the specular
highlight visible in the 2nd column (enlarged in 3rd column), and the tread
plate pattern visible in the highlight in the 4th column (enlarged in the 6th
column).

this would also act as a deregularizer on the latent code, leading to
more objectionable artifacts in the optimized SVBRDFs. Instead, we
propose to reintroduce details by performing an additional refine-
ment post-processing step that directly adjusts the reflectance maps
similar to classic inverse rendering as in Equation (1).
Typically, an unconstrained inverse rendering optimization is

prone to introducing artifacts unless the starting point is already
close to the solution. We argue that the solution from the deep
inverse rendering framework represents such a starting point. Fur-
thermore, since the solution from the deep inverse rendering frame-
work is already a good solution, we only need a modest number
of iterations to converge to a good solution. Figure 7 shows two
examples of SVBRDFs before and after refinement using 5 input
photographs. As can be seen, missing detail is reintroduced, while at
the same time retaining most of the features from the deep inverse
rendering SVBRDF.

7 RESULTS

7.1 Implementation Details
We implemented our framework in Tensorflow [Abadi et al. 2015],
including a differentiable renderer constructed from built-in layers
in Tensorflow. We use Adam [Kingma and Ba 2015] to train the
auto-encoder using a learning rate of 10−4, and β1 set to 0.5; all
other hyperparameters are kept to Tensorflow’s defaults. We ini-
tialize the network for training with random values drawn from
a zero mean normal distribution with a variance of 0.02. We train
the auto-encoder in an end-to-end fashion for 100k iterations us-
ing mini-batches of 64 samples on the SVBRDF training dataset
of Deschaintre et al. [2018]. Training takes about 16 hours on a
workstation with dual NVidia GTX 1080Ti GPUs.

We also implemented the deep inverse rendering optimization
in Tensorflow as it uses many of the same components as for the
SVBRDF auto-encoder. We again use Adam as the optimization algo-
rithm and set the learning rate to 10−3, and β1 = 0.5; all other hyper-
parameters are kept to the default. We ran Adam for 4k iterations,
regardless of the resolution. The refinement is also implemented in
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Fig. 8. Additional SVBRDFs estimated from a single input photograph and
visualized under a novel lighting condition.

Tensorflow using Adam with the same hyperparameters. Because
the refinement starts from the result of the deep inverse rendering,
we can significantly reduce the number of iteration. For the results
in this paper, we set the number of refinement iterations to 200.

Multi-resolution Optimization. The optimization computation cost
increases proportionally with image resolution. To accelerate com-
putations, especially for high resolution SVBRDFs, we implemented
a multi-resolution optimization strategy. We start by downsampling
the top-view to the native 256 × 256 resolution of the auto-encoder
(which also is the native resolution of the single image SVBRDF
networks used for initialization). We then run our deep inverse
rendering algorithm as before, but only for 1k iterations and with-
out refinement. The resulting property maps are then bilinearly
upsampled to double resolution, and used as starting point for a
double resolution deep inverse rendering optimization, again for
1k iterations. We continue this process until we reach the target
resolution. For the last deep inverse rendering pass, we use 2k itera-
tions to ensure good convergence. Finally, we run the refinement
step for 200 iterations. This multi-resolution approach halves the
computation time, and produces a comparable result to a full resolu-
tion optimization. We have used this method for all high resolution
SVBRDFs in this paper.

7.2 Synthetic Acquisition Results
We first validate the quality and accuracy of our results on SVBRDFs
from publicly available datasets that provide us with reference re-
flectance maps. We simulate the acquisition by randomly placing
the camera/light at unit distance above the sample, and aimed at
center of the exemplar.
Figure 9 compares deep inverse rendering results (with refine-

ment) at 256× 256 resolution for 1, 2, 5, and 20 input images, as well

as against the results from prior single-image methods [Deschaintre
et al. 2018; Li et al. 2018a]. Comparing the single image results for
prior work and ours (rows 2−4) show that deep inverse rendering:
recovers a more accurate match to the input photograph, provides
more plausible results exhibiting less artifacts, and produces cleaner
reflectance property maps. Figure 8 shows additional single image
comparisons for a variety of materials, visualized under novel light-
ing conditions. On average, we found that deep inverse rendering
further improves on the single image SVBRDF estimates. Increasing
the number of input photographs (Figure 9, rows 5−7) shows pro-
gressively more accurate results compared to the reference. Note
that 20 images is still a sparse sampling of all possible view and
lighting directions.
Besides improving the reconstruction results, deep inverse ren-

dering from more than one input photograph can help to correctly
resolve ambiguous single image cases, i.e., two or more plausible
SVBRDFs exist that can produce the same image. Figure 10 shows
such a case. A single image reconstruction (2nd rows) might select
the wrong ’most plausible’ SVBRDF based on which initial SVBRDF
was preferred by the single image SVBRDF network of Deschain-
tre et al. [2018]. However, as the number of input images increases,
the ambiguity between the two cases begins to resolve. Figure 10
(3rd row) shows that with just 2 photographs we can already see
convergence towards the correct solution. At 20 input images (last
row) the ambiguity is mostly resolved.

We refer to the supplementary material for more results.

7.3 Real Acquisition Results
We also use our deep inverse rendering framework to recover high
resolution (1024 × 1024) SVBRDFs from several real-world mate-
rial samples. The input LDR photographs are captured using the
backfacing camera of a mobile phone with the flash light turned
on; we ensure that one photograph is captured from the top view.
Each photograph is radiometrically linearized using a simple inverse
gamma 2.2 correction. We also place a checkerboard around the
sample to estimate the view (and lighting) direction.

Figure 11 shows, 3 captured materials, rerendered from two light-
ing directions and compared to reference photographs not part of
the set used for deep inverse rendering. As can be seen, we achieve
plausible results for the three materials and different number of
input photographs. We refer to the supplementary material for re-
constructions from a different number input photographs, as well
as other materials.

8 DISCUSSION
Deep Inverse Rendering vs. Classic Inverse Rendering. In Section 5

we proposed to add a post-processing step to reintroduce the details
that the auto-encoder cannot reproduce. This post-processing step
is very similar to a classic inverse rendering optimization (albeit
with much less iterations, and without additional regularization
terms). We argue we do not need additional regularization terms
because the solution from deep inverse rendering is generally accu-
rate enough to support direct optimization without regularization.
This raises the question whether direct optimization starting from
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Fig. 9. Deep inverse rendering results for an increasing number of input photographs (rows 4− 7) show an improvement in accuracy. Deep inverse rendering on
a single input image also improves the quality of the results compared to the existing learning-based single image SVBRDF estimation methods [Deschaintre
et al. 2018] (2nd row; also used as starting point for rows 4 − 7) and [Li et al. 2018a] (3rd row).

an SVBRDF provided by the single image estimation methods [De-
schaintre et al. 2018; Li et al. 2018a] would also work? In other words,
is the optimization in the latent space necessary and/or beneficial?

Figure 12 (bottom) compares 3 selected materials estimated from
a varying number of input photographs using (a) deep inverse ren-
dering, (b) deep inverse rendering + refinement, and (c) classic
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Fig. 10. Two ambiguous SVBRDFs that differ in their reflectance property maps, but produce similar images for the top view. Deep inverse rendering produces
plausible results from one input photograph, but fails to resolve the inherent ambiguity. Increasing the number of photographs helps to resolve the ambiguities.

Fig. 11. Examples of three captured real-world material SVBRDFs reconstructed from 20 (Gift card), 10 (Wood), and 2 (Leather) input photographs. All the
result maps (3rd and 4th row) are recovered at 1024 × 1024 resolution. We also compare rerenderings under novel lighting conditions (2nd row) with reference
captured photographs (1st row).
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Fig. 12. Deep inverse rendering vs. classic inverse rendering illustrated on three selected materials. (top) Error plots of number of input photographs versus the
L2 error on the reflectance property maps (odd columns) and the L2 error with respect to the rendered images (even columns) for classic inverse rendering
(red), deep inverse rendering with (green) and without (blue) refinement. (bottom) Visualizations of the three selected materials under novel lighting directions
for a different number of input images. We show the converged results (50 input photographs) for the middle and right materials. However, even at 50 input
photographs, the classic inverse rendering results still contain artifacts. For the left material, we show the results for 10 images at which point the classic
inverse rendering approach has a lower rendering error. Despite the lower render error for the left case, the visualizations of the classic inverse rendering
method still exhibit subtle visual artifacts (circled), whereas the deep inverse rendering results do not.

inverse rendering all starting from the same starting point with
an equal number of total iterations. We set the number of itera-
tions large enough to ensure convergence for the classic inverse
rendering method (i.e., less than 1% relative change in loss). Deep
inverse rendering without refinement produces plausible results,
albeit sometimes lacking in detail. An additional refinement step
brings back these details. While, classic inverse rendering does
sometimes succeed, in a significant number of cases, it fails with
visually noticeable artifacts. Indicating that the starting point is
too far from the target SVBRDF. As expected, when the number of
images increases, and thus additional constraints are introduced,
classic inverse rendering produces less artifacts. However, we found
that deep inverse rendering with refinement produces results with-
out artifacts earlier (i.e., with less input photographs), as illustrated
in the error graphs in Figure 12 (top) that plots the reconstruction
error for a varying number of input images. The graphs plot the L2
error on the reflectance property maps (odd columns) and the L2
error on the rendered images (even columns). Due to the non-linear
mapping from reflectance properties to rendered images, these two
types of errors are not always consistent. For example, a minor error
in the normal map (i.e., low reflectance map error) can lead to large

visual differences for highly specular materials (i.e., large render
error). Conversely, a large specular roughness combined with a low
specular albedo can lead to little visual difference. Classic inverse
rendering (red curve) generally produces noisy reflectance property
maps, and thus a larger map error. Even when the rendering error is
low, it often still includes visually noticeable artifacts. Deep inverse
rendering (blue curve) produces SVBRDFs with less artifacts, but
often lacking in detail. This impacts the error on the reflectance
maps and renderings (depending on the sharpness of the features in
the underlying SVBRDF). In the majority of the cases, deep inverse
rendering without refinement outperforms classic inverse rendering.
Deep inverse rendering combined with refinement (green curve)
performs consistently best.

We further quantitatively analyze the differences in accuracy be-
tween deep inverse rendering (with and without refinement) and
classic inverse rendering on a large synthetic dataset. To avoid bias
towards the characteristics of the training dataset, for both the ini-
tialization network as well as our auto-encoder, we compose the
test set of 42 SVBRDFs of which 20 SVBRDFs are from the test set
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Table 1. Quantitative comparison for different number of input images of L2 reflectance map error and L2 rendering error (over 100 random view and lighting
directions) for a large synthetic test set of 42 SVBRDFs. The best (i.e., lowest) error for each component and number of input images is marked in bold.

Classic inverse rendering Deep inverse rendering Deep inverse rendering with refinement

N Diffuse Specular Roughness Normal Map Render Diffuse Specular Roughness Normal Map Render Diffuse Specular Roughness Normal Map Render
Average Error Average Error Average Error

1 0.016030 0.02109 0.08772 0.003790 0.03215 0.007594 0.014400 0.02123 0.07209 0.004214 0.02798 0.007443 0.014440 0.02121 0.07145 0.004235 0.02783 0.007394
2 0.009133 0.01818 0.07673 0.003293 0.02684 0.006141 0.006029 0.01725 0.06269 0.002284 0.02206 0.004717 0.005919 0.01722 0.06235 0.002079 0.02189 0.004369
5 0.006182 0.01485 0.06686 0.001340 0.02231 0.002163 0.003349 0.009078 0.05515 0.001042 0.01716 0.002503 0.002854 0.00817 0.05548 0.000489 0.01675 0.001437
20 0.003658 0.00724 0.05278 0.001198 0.01622 0.001092 0.002098 0.006228 0.04249 0.000715 0.01288 0.001637 0.000850 0.00447 0.04130 0.000273 0.01172 0.000413
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Fig. 13. A comparison of SVBRDF estimations for three selected materials from 2 (left column), 5 (middle column), and 20 (right column) input HDR (2nd row)
and LDR (last row) photographs. The LDR results are comparable to the HDR results, with some subtle details missing due to the quantization of the input
photographs.

Fig. 14. Over and undersaturation in LDR input photographs results in a
loss of information that can affect the reconstruction of the specular com-
ponent. (top-left) Rendering error increases when the ratio of oversaturated
pixel increases, resulting in color artifacts in the specular highlights. (top-
right) Reducing the exposure increases the number of pixels affected by
quantization artifacts, resulting is a dissolution of the specular component.
(bottom) Visualization of the reconstructed SVBRDF under a novel lighting
condition for selected exposures (expressed in F-stops and marked by a
green line in the graphs).

provided by Deschaintre et al. [2018], 15 SVBRDFs are from Ait-
tala et al. [2015], 4 are from the Free PBR Materials website 2, and 3
are manually created; we refer to the supplemental material for a

2https://freepbr.com

detailed listing. We crop each SVBRDF to a 256×256 resolution, and
generate sets of 1, 2, 5, and 20 synthetic input images for randomly
selected view/lighting directions. Table 1 summarizes the average L2
errors on each of the reflectance property maps and the rendering er-
ror over 100 novel view and lighting directions. While in a few cases,
classic rendering and/or deep inverse rendering without refinement
produces a smaller error on an isolated property map, in general,
deep inverse rendering with refinement leads to a lower rendering
error. This is consistent with the results in Figure 12 that showed
higher visual fidelity for deep inverse rendering with refinement.

LDR vs. HDR Input Photographs. At its core, our method is an
inverse rendering method. Therefore, it is straightforward to adapt
our optimization to reconstruct the SVBRDF from either low dy-
namic range (LDR; 8-bit linear images) or high dynamic range (HDR)
photographs; we only need to clamp pixel values to [0, 1] and add a
quantization step after rendering for LDR optimization. Figure 13
compares for 3 selected materials the optimized SVBRDF results
from LDR and HDR photographs. In general, the results are quali-
tatively very similar. We observe that the LDR images sometimes
suffer from additional artifacts, especially when small pixel values
get quantized to 0. In general, the recovered LDR SVBRDFs are
remarkably accurate even when some of the peaks of the highlights
are clamped. However, this raises the question to howmuch oversat-
uration our method can bear. Figure 14 (top-left) plots the rendering
error with respect to the ratio of well exposed versus oversaturated
pixels for N = 20 input images. From this we can see that high
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Fig. 15. Impact of the auto-encoder training loss on deep inverse rendering
without refinement demonstrated for two input photographs. While the
auto-encoder trained with only the reflectance map loss Lmap produces
sharper property maps, the corresponding visualizations do not reflect the
expected appearance. Training using only the render loss Lr ender produces
more blurry property maps, specially for the roughness and specular albedo
maps. Our combined loss function strikes a balance between map detail
and render accuracy.

quality results can be estimated when 20% of the pixels are over-
saturated in the input. Increasing the ratio of oversaturated pixels
further results in visual artifacts in the specular highlights (Figure 14
(bottom)). Conversely, we also explore the impact of quantization on
underexposed inputs, i.e., pixels are mapped to a low or zero pixel
value (Figure 14 (top-right)). In general, we observe less artifacts in
the recovered SVBRDFs, except for severely underexposed images
(-6 F-stops) where the specular component disappears.

Training Loss Function. Prior work has used the loss on the re-
flectance maps [Li et al. 2017], the loss on renderings of the mate-
rials [Deschaintre et al. 2018], or a combination of both [Li et al.
2018a]. However, the goal of these prior works is different than ours
as they aim for training an inference network as opposed to learn-
ing a space suitable for inverse rendering. We therefore evaluate all
three in the context of deep inverse rendering. Figure 15 shows the
results of optimizing an SVBRDF using an auto-encoder trained with
three different loss functions (Lmap , Lr ender , and our training loss
Lmap +

1
9Lr ender ) from two input photographs. From this we can

see that using onlyLmap tends to produce sharper reflectance maps.
However, this detail does not always result in plausible visualiza-
tions. Using onlyLr ender produces overly blurred reflectance maps,
especially the specular roughness and albedo maps. Our training
loss function strikes a balance between regularizing and retaining
detail.

Impact of Initialization Accuracy. Figure 16 shows a failure case
of our deep inverse rendering framework. We argue that the failure
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Fig. 16. An example of a failure case caused by a suboptimal starting point.
Starting from the reference SVBRDF, without refinement, produces an accu-
rate reconstruction, albeit with some detail missing in the specular albedo
map (2nd row). This indicates that the SVBRDF lies in the latent embedding.
However, when starting from a suboptimal SVBRDF (from [Deschaintre
et al. 2018]), deep inverse rendering fails to correct the specular roughness
and albedo maps (last row).

is caused by an initialization that is insufficiently accurate/plausible.
We can easily show that the SVBRDF of this failure case can be
accurately represented in the latent space by encoding the reference
SVBRDF, and further optimizing it using deep inverse rendering
(without refinement) to address shortcomings in the encoder. While
the reconstruction is less detailed, a sufficiently accurate represen-
tation can be found in the latent space. This indicates that deep
inverse rendering does not find the correct solution and ends up in
a local minimum. Our method is at its core a nonlinear optimization
due to the nonlinear mapping from latent code to rendered images.
Like any nonlinear optimization, a suboptimal starting point will
lead to a local minimum. In general, we observe that deep inverse
rendering has trouble correcting the initial starting point when the
roughness values are too large combined with an underestimation
of the specular albedo. We posit that this creates a strong local min-
imum because small changes in roughness affect a large area in the
renderings (producing a global error), while only a yielding a small
change in each pixel’s value. Hence, if there is only a localized error,
e.g., a missing highlight, then it will be difficult to balance the global
error introduced on all pixels versus the small local improvement
on the highlight; increasing the number of photographs does not
resolve this problem.
Currently, we rely on a single image estimation method [De-

schaintre et al. 2018; Li et al. 2018a] to provide a starting point. If the
input image used for initialization does not exhibit a visual effect
from a reflectance component, or if it has ambiguous reflectance fea-
tures, then such an initialization can be suboptimal. However, one
of the strengths of our method is that it is not married to a particular
initialization method, and future advances (e.g., generalizations of
Kim et al. ’s [2017] method to SVBRDFs) can be easily used for boot-
strapping our method. Even in the case of future advances in deep
multiview SVBRDF estimation solutions, our deep inverse rendering
method still offers an advantage in that it optimizes to the input
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Table 2. Quantitative impact of calibration errors on the light position
(expressed in degrees with respect to the direction towards the center of
the sample) and the impact of environment lighting (expressed by relative
power with respect to the point light power).

Diffuse Specular Roughness Normal Map Average Render Err.
1◦ 0.000901 0.004756 0.04143 0.000281 0.01184 0.000496
5◦ 0.001578 0.005981 0.04492 0.000365 0.01321 0.001144
10◦ 0.002427 0.007834 0.05208 0.000642 0.01575 0.002654

0◦/ 0% 0.000850 0.004470 0.04130 0.000273 0.01172 0.000413
1% 0.000809 0.005403 0.04073 0.000280 0.01181 0.000481
5% 0.001663 0.005546 0.04033 0.000306 0.01196 0.000929
10% 0.003577 0.008345 0.04162 0.000374 0.01348 0.002270

Reference Top view init. Side view init.

Fig. 17. Comparison of visualizations of SVBRDFs estimated from 5 (top)
and 20 (bottom) input photographs bootstrapped from the top view or side
view (45◦). Due to the robustness of the single image SVBRDF estimation
method of Deschaintre et al. [2018], we can relax the condition that the top
view needs to be captured.

instead of to the average loss over a training dataset, as well as its
ability to optimize high resolution solutions from low resolution
initializations.

Top View Constraint Relaxation. If the method used to estimate
the initial starting point SVBRDF is robust to deviations from the
top view (e.g., such as [Deschaintre et al. 2018]), then we can relax
the condition that at least one photograph must be captured from
the top view. Because our framework is based on inverse rendering,
it does not require retraining to accommodate this change. Figure 17
shows deep inverse rendering results initialized from a side view
at 45 degrees. Note that we removed the top view from the set
of input photographs. The SVBRDFs obtained from both 5 and 20
photographs are virtually identical to the top view initialization.

Lighting Robustness. Our method assumes that the SVBRDF sam-
ple is lit only from a point light colocated with the camera, and that
its position is known. We perform two experiments to gain better
insight on the impact on the accuracy if these preconditions are not
met.
In a first experiment, we add random perturbations to the light

source position in each of the N = 20 input images. We limit the
degree of perturbations such that the direction of the light, measured
relative to the center of the sample, falls within a predefined cone. As
demonstrated in Figure 18 (rows 1-4), an error in the light position
results in errors in the surface normal, and consequently, also in the
specular component. Table 2 summarizes the average errors over the
test set of 42 SVBRDFs for 1, 5, and 10 degrees of error. Both Figure 18
and Table 2 indicate that our method is able to produce good results
for errors up to 10 degrees.

Fig. 18. Robustness of our method to lighting position error and to un-
controlled environment light contamination. The top four rows show the
reconstruction results and visualizations under novel lighting based on ac-
curate light position (2nd row) and with a random position error within a 5◦
(3rd row) and a 10◦ (4th row) range. The bottom four rows show the results
with no environment lighting (6th row), with environment lighting at 5% of
the point light intensity (7th row), and with 10% of the point light intensity
(8th row). Reference SVBRDFs and visualizations are shown in the 1st and
5th row.

As a second experiment, we validate the robustness of our method
to deviations from the ideal point lighting by including environment
lighting (i.e., Uffizi Gallery) scaled to control the relative brightness
of the point light versus the environment lighting. During deep
inverse rendering, we ignore the environment lighting. Figure 18
(rows 5-8), show that uncontrolled environment lighting affects the
specular component by baking in the specular highlight from the
environment lighting into the specular albedo and roughness maps.
Table 2 quantifies the errors over the test dataset of 42 SVBRDFs,
showing that our method is robust to moderate degrees of environ-
ment lighting.
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9 CONCLUSIONS
In this paper we presented a novel unified framework for high reso-
lution SVBRDF estimation using inverse rendering from an arbitrary
number of photographs. The precision of the estimated SVBRDFs
automatically adapts to the number of input photographs, ranging
from plausible estimates for underconstrained acquisitions (e.g., a
single photograph) to accurate reconstructions for fully constrained
conditions. Our framework does not rely on fragile handcrafted
heuristics or regularization terms, but instead directly optimizes
learned features. We achieve this by optimizing in a latent em-
bedding of the space of SVBRDFs learned by an auto-encoder. We
propose a number of enhancements to regularize the learned latent
space to facilitate optimization. We demonstrated that our frame-
work is suitable for estimating high resolution SVBRDFs from an
arbitrary number of input photographs. Furthermore, we show that
our method can improve the quality of existing deep learning based
single image SVBRDF estimation methods.
For future work we would like to improve on the initialization

of the deep inverse rendering optimization. Currently we rely on
existing methods that are designed for producing visually good
results and not for initializing a deep inverse rendering optimization.
Joint optimization of an initialization network as well as the auto-
encoder for optimization is an interesting avenue for future research.
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