
Diffusion Curve Textures for Resolution Independent Texture Mapping

Xin Sun∗ Guofu Xie†‡ Yue Dong∗ Stephen Lin∗ Weiwei Xu∗ Wencheng Wang† Xin Tong∗ Baining Guo∗

∗Microsoft Research Asia †State Key Laboratory of Computer Science, ISCAS ‡GUCAS

(a) (b)

Figure 1: Our method provides a compact and explicit representation of diffusion curve images for texture mapping onto a surface. The
sharp features and detailed color variations of textures are well preserved in the rendering results.

Abstract

We introduce a vector representation called diffusion curve tex-
tures for mapping diffusion curve images (DCI) onto arbitrary
surfaces. In contrast to the original implicit representation of
DCIs [Orzan et al. 2008], where determining a single texture value
requires iterative computation of the entire DCI via the Poisson
equation, diffusion curve textures provide an explicit representa-
tion from which the texture value at any point can be solved di-
rectly, while preserving the compactness and resolution indepen-
dence of diffusion curves. This is achieved through a formulation
of the DCI diffusion process in terms of Green’s functions. This
formulation furthermore allows the texture value of any rectangular
region (e.g. pixel area) to be solved in closed form, which facilitates
anti-aliasing. We develop a GPU algorithm that renders anti-aliased
diffusion curve textures in real time, and demonstrate the effective-
ness of this method through high quality renderings with detailed
control curves and color variations.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: vector images; diffusion curves; texture mapping and

renderingLinks: DL PDF

1 Introduction

Diffusion curves [Orzan et al. 2008] are powerful primitives for
creating and editing smooth-shaded vector graphics images. They
consist of control curves with different colors defined along each

side. Images are produced from them by diffusing the colors over
the image space in a manner that resembles radiative heat trans-
port. As with other vector graphics models, diffusion curves have
a concise representation that is resolution independent and easy to
manipulate. But what makes diffusion curves especially appealing
among such techniques is its ability to model a broad array of im-
ages with subtle shading variations. Because of its simplicity and
representation power, diffusion curves has become a popular tool
for graphic artists and is considered a possible addition to the Scal-
able Vector Graphics (SVG) specification.

Diffusion curve images (DCIs) and other forms of vector
graphics have drawn considerable attention as a representa-
tion for texture maps [Qin et al. 2006; Nehab and Hoppe 2008;
Jeschke et al. 2009b]. In contrast to conventional bitmap textures
that suffer from limited resolution, a DCI is resolution independent
in addition to being compact. However, there exist two major chal-
lenges in using them for texture mapping. First, diffusion curves
provide an implicit representation that does not support random ac-
cess. In order to obtain the DCI value at a particular point, the full
image must be synthesized by solving a Poisson equation. Sec-
ond, pixels on the control curves need to be specially processed to
generate anti-aliased results, which complicates the rendering pro-
cess and decreases performance. Jeschke et al. [2009b] designed a
real-time rasterization method for converting a DCI into bitmaps for
anti-aliased texture mapping. However, very high resolution pixel
grids are required by this approach to accurately model fine-scale
texture details, with a consequent reduction of speed. Recently,
Bowers et al. [2011] and Pang et al. [2011] proposed schemes that
support random access but generate only an approximation to the
DCI. Moreover, it is unclear how to perform anti-aliased rendering
with these techniques.

In this paper, we propose an explicit representation of diffusion
curve images called diffusion curve textures that efficiently sup-
ports random access and anti-aliased rendering, while maintaining
the favorable characteristics of diffusion curves. The key idea of
our work is to formulate the diffusion process of DCIs in terms of
Green’s functions. We define weighted kernels based on Green’s
functions along each of the control curves. These Green’s function
kernels are fixed-distance functions that describe the contribution
of a control point to each point in the 2D image domain, while the
kernel weights are determined from the colors defined along the dif-

http://doi.acm.org/10.1145/10.1145/2185520.2185570
http://portal.acm.org/ft_gateway.cfm?id=1145/2185520.2185570&type=pdf

fusion curves. With this Green’s function based representation, we
show that the image value at any given point can be directly evalu-
ated by aggregating the contributions of weighted Green’s function
kernels along all of the control curves.

A major advantage of the Green’s function based representation is
that the integration of Green’s function kernels for a rectangular
image region has a closed-form solution. Diffusion curve texture
values for arbitrary sized rectangles (e.g. pixel areas) can thus be
computed at a constant rendering cost, an important feature for fast
anti-aliased rendering. We develop an efficient algorithm for ren-
dering anti-aliased diffusion curve textures that incorporates a curve
culling scheme and an adaptive sampling strategy to expedite pro-
cessing. Since our algorithm renders all pixels in a uniform man-
ner, it can be easily implemented on the GPU. The rendering per-
formance depends only on image resolution and is independent of
texture scales over surfaces and viewing directions. With this tech-
nique, we demonstrate high quality renderings from diffusion curve
textures for various levels of diffusion curve complexity.

In summary, the contributions of this paper are

• Diffusion curve textures, an explicit representation of diffu-
sion curve images that supports random access and fast inte-
gration.

• An efficient algorithm for rendering anti-aliased diffusion
curve textures mapped over 3D surfaces.

• A GPU implementation of the rendering method that provides
real-time performance.

2 Related Work

Vector Images and Textures A vector image can be directly
modeled by a set of simple vector primitives such as points, lines,
curves, and polygons associated with colors. Qin et al. [2006;
2008] developed techniques for rendering anti-aliased vector tex-
tures based on the distance between pixel samples and primitives.
Nehab and Hoppe [2008] used a lattice structure for speeding up
the random access of vector primitives and generated anti-aliased
results by prefiltering and supersampling the vector primitives in
a pixel. In our work, we aim for similar goals but for smoothly
shaded images defined by diffusion curves.

Different vector representations have been introduced for model-
ing smoothly shaded images. The gradient mesh is widely used
in industry for vectorizing images that consist of smooth color re-
gions [Lecot and Levy 2006; Sun et al. 2007; Lai et al. 2009]. Xia
et al. [2009] segmented images into triangular patches and mod-
eled the color variation inside a patch with thin plate splines. Dif-
fusion curve images [Elder and Goldberg 2001; Orzan et al. 2008]
and its extensions [Bezerra et al. 2010; Takayama et al. 2010] con-
struct images or volumes by diffusing colors specified on curves
and surfaces. Most recently, Finch et al. [2011] introduced con-
trolled thin plate splines for authoring vector images with greater
expressive control. These works all focus on authoring or vectoriz-
ing raster images, rather than on how to use them for texture map-
ping. Recently, Wang et al. [2010; 2011] presented a vector repre-
sentation for solid textures in which the region boundary is defined
by implicit distance functions and the volumetric color variations
are modeled by radial basis functions (RBFs). This approach, how-
ever, is difficult to extend to DCIs with non-closed control curves.

Several hybrid representations combine raster textures with
sharp vector features embedded in texels for anti-aliased texture
mapping [Ramanarayanan et al. 2004; Sen et al. 2003; Sen 2004;
Tumblin and Choudhury 2004; Tarini and Cignoni 2005]. Most of
these methods store a fixed number of primitives in each texel and

need high resolution images for representing textures with high lo-
cal complexity. Although storing various numbers of primitives in
texels [Ramanarayanan et al. 2004] could avoid this problem, this
leads to high computational costs for texture sampling and interpo-
lation. We use the compact representation of diffusion curve tex-
tures to model both sharp features and smooth color variations in
the image and render them in the same way.

Diffusion Curve Images Diffusion curve images were intro-
duced by Orzan et al. [2008] for modeling vector images with
smooth color variations. A significant difference of DCI from other
vector graphics representations is that the image has to be com-
puted by solving a Poisson equation defined over the entire 2D do-
main. Generally, the solution at an n × n resolution can be solved
by multigrid methods [Bolz et al. 2003; Kazhdan and Hoppe 2008;
Jeschke et al. 2009a] with O(n2) time complexity.

To render a DCI mapped onto a surface, a naı̈ve solution is to ras-
terize the DCI as bitmaps at specific resolutions and then render the
result via the traditional rendering pipeline. However, a high reso-
lution image is needed to preserve sharp features at close-up views,
which leads to large computational and storage costs. Jeschke et
al. [2009b] alleviated this issue by warping the texture space ac-
cording to the current view and using a dynamic feature embedding
algorithm to retain sharp features in the generated texture image.
However, for diffusion curve images with rich features or complex
curves, a high resolution solution is still needed. By contrast, our
method directly integrates texture values in each pixel region from
the compact Green’s function based representation and preserves
sharp features at any resolution. With the two acceleration schemes
presented in the paper, the time complexity of our rendering algo-
rithm is proportional to the screen resolution and independent of
model and image complexity.

Bowers et al. [2011] designed a ray tracing based approach to sim-
ulate DCIs. By reformulating the problem to be equivalent to final
gathering in global illumination, the image values can be evalu-
ated by GPU based stochastic raytracing. They also extended the
curve attributes of DCI to support additional authoring tasks. Most
recently, Pang et al. [2011] used mean value coordinates interpo-
lation on a triangle mesh to generate images similar in appearance
to DCIs. Both methods provide only approximate solutions to the
DCI. Also, it is unclear how to efficiently perform integration over
regions with these methods, which is a requirement for texture anti-
aliasing. Unlike these approximation techniques, our method pro-
vides an accurate solution for diffusion curve images and supports
random access as well as fast integration.

Green’s Functions Green’s functions have been applied in var-
ious graphics applications. D’Eon and Irving [2011] used a quan-
tized Green’s function for rendering light diffusion in translucent
materials. Lipman et al. [2008] presented Green Coordinates for
mesh deformation based on the Green’s function for the Laplacian.
An analytic integration of the Green’s function over a closed poly-
hedral cage is used for Green Coordinates computation. Farbman et
al. [2011] modeled the solution of the Poisson equation in the im-
age domain as the convolution of a Green’s function and the image
gradients. They then approximated the convolution with specially
designed convolution pyramids. Our method adapts the Green’s
function for the Laplacian in 2D space to model and render diffu-
sion curve images, for which the underlying Poisson equation can
be accurately modeled by Green’s function kernels defined on con-
trol curves. Moreover, we derive an analytic solution for integrating
the 2D Green’s function kernel contributions over a rectangular re-
gion and present a method to compute this in real time.

3 Diffusion Curve Textures

In this section, we briefly review Green’s functions, and then de-
rive a representation of diffusion curves based on Green’s functions
from which diffusion curve images can be directly solved.

3.1 Preliminaries on Green’s Functions

Green’s functions are a useful tool for solving inhomogeneous dif-
ferential equations with boundary conditions [Bayin 2006]. For the
Laplacian operator ∆, a Green’s function G (x,x′) at a point x′

satisfies the following equation:

∆G
(

x,x
′)

= δ
(∥

∥x − x
′∥
∥

)

(1)

where δ is the Dirac delta function.

For a scalar function u (x) that is twice continuously differentiable

on region D in R
2, Green’s second identity relates a double integral

over D to a line integral over the region boundary:
∫∫

D

(

u
(

x
′)

∆G
(

x,x
′)

− G
(

x,x
′)

∆u
(

x
′))

dx
′

=

∮

∂D

(

u
(

x
′) ∂G

(

x,x′
)

∂n (x′)
− G

(

x,x
′) ∂u

(

x
′
)

∂n (x′)

)

dx
′

(2)

where n (x) is the normal direction on the boundary ∂D.

The following expression for u (x) can be formulated from Eq. (1):
∫∫

D

u
(

x
′)

∆G
(

x,x
′)

dx
′
= u (x) . (3)

From Eq. (2) and Eq. (3), we can derive Green’s third identity to
evaluate u (x):

u (x) =

∫∫

D

G
(

x,x
′)

∆u
(

x
′)

dx
′

+

∮

∂D

(

u
(

x
′) ∂G

(

x,x′
)

∂n (x′)
− G

(

x,x
′) ∂u

(

x
′
)

∂n (x′)

)

dx
′
. (4)

3.2 Green’s Function Kernels

We utilize Green’s functions to solve for values in a diffusion curve
image. Diffusion curves [Orzan et al. 2008; Jeschke et al. 2009a]
represent an image as a harmonic function u (x) that satisfies the
Laplace equation:

∆u (x) = 0 (5)

with boundary conditions Cl, Cr specified on the two sides of each
control curve B:

u
(

x
′)

|x′∈∂D = {Cl

(

x
′)

, Cr

(

x
′)
}|x′∈B. (6)

As illustrated in Fig. 2(a), we define boundary normals to be ori-
ented outwards from their domain (i.e. toward the other side of
B) and the normal of the control curve B as n (x′) = nr (x

′) =
−nl (x

′).

With Eq. (5) and Eq. (6), we can simplify Eq. (4) to

u (x) =

∮

∂D

(

u
(

x
′) ∂G

(

x,x′
)

∂n (x′)
−

∂u
(

x
′
)

∂n (x′)
G
(

x,x
′)

)

dx
′

=

∫

B

(

Cl

(

x
′) ∂G

(

x,x′
)

∂nl (x′)
−

∂u
(

x
′
)

∂nl (x′)
G
(

x,x
′)

)

dx
′

+

∫

B

(

Cr

(

x
′) ∂G

(

x,x′
)

∂nr (x′)
−

∂u
(

x
′
)

∂nr (x′)
G
(

x,x
′)

)

dx
′

=

∫

B

(

C
(

x
′) ∂G

(

x,x′
)

∂nr (x′)
− E

(

x
′)

G
(

x,x
′)

)

dx
′
, (7)

N(x’)

Nr(x’)

Nl(x’)

u(x)|x∈D

Cl(x’)/El(x’)

Cr(x’)/Er(x’)

× 0.5 × 256

× 4

x’

(a) (b) (c)

(d) (e) (f)

B(x’)

Figure 2: A diffusion curve texture defined by two control curves:
an S-shaped curve, and a curve along the image boundary. (a) Con-
trol curves with boundary conditions (0.75 for the right S-shaped
boundary, 0.5 for the left S-shaped boundary and the image bound-
aries). (b) Profile of Green’s function kernel G (x,x′) from one
point on a control curve. (c) Profile of Green’s function kernel
Gn (x,x′) from one point on a control curve. (d) Diffusion curve
image computed from all of the Green’s function kernels. (e) Image
generated from only the Green’s function kernels G (x,x′). (f) Im-
age generated from only the Green’s function kernels Gn (x,x′).
In the rightmost two columns, red indicates positive values, while
blue indicates negative values.

where C (x′) = −Cl (x
′)+Cr (x

′) , E (x′) =
∂u(x′)
∂nl(x

′)
+

∂u(x′)
∂nr(x′)

.

Eq. (7) indicates that u (x) at any point within the entire domain D

can be evaluated through computations only on the control curves.
Since the Green’s function is symmetric with respect to x and x

′

(i.e. G (x′,x) = G (x,x′)), we can view Eq. (7) in terms of two
Green’s function based kernels defined along the control curves,
instead of over the domain D. Therefore, we explicitly represent a
diffusion curve image with the two Green’s function based kernels

G (x,x′) and Gn (x,x′) =
∂G(x,x′)
∂n(x′)

, and their weights C (x′)

and E (x′) defined along the control curves:

u (x) =
∑

i

∫

Bi

(

Ci

(

x
′)

Gn

(

x,x
′)

− Ei

(

x
′)

G
(

x,x
′))

dx
′
. (8)

In our work, we employ the Green’s function G (x,x′) in R
2:

G
(

x,x
′)

=
1

2π
ln
(∥

∥x − x
′∥
∥

)

(9)

with the corresponding normal derivative Gn (x,x′):

Gn

(

x,x
′)

=
∂G
(

x,x′
)

∂n (x′)
=

dG
(

x,x′
)

dx
· n
(

x
′)

=
x̂ nx + ŷ ny

2π (x̂2 + ŷ2)
(10)

where n (x′) = (nx, ny) and (x̂, ŷ) = x− x
′.

Note that this explicit representation is different from the original
implicit diffusion curves representation that is based on the Poisson
equation. First, our method allows evaluation at only the point it-
self without considering other areas, while a linear system for the
Poisson equation must be solved over the entire domain to com-
pute the value at a single point. Second, unlike the explicit solution
provided by Green’s function kernels, the original implicit repre-
sentation requires discretization of the domain to solve the Poisson
equation, which intrinsically enforces a tradeoff between rendering
quality and computational performance.

Fig. 2(b)(c) illustrate the two Green’s function kernels defined at
one point on the control curve, where G is isotropic while Gn is
anisotropic. As shown in Fig. 2 (e)(f), the contributions of the two
kernels defined along the curve result in the global low frequency
color variation and the high frequency color change at boundaries,
respectively.

To calculate E (x′), we note that for a closed domain D with

Hölder continuous boundary values u (x′) |x′∈∂D, the solution for
u (x) is unique. So we solve

u (x) =

∮

∂D

(

u
(

x
′)

Gn

(

x,x
′)

−
∂u
(

x
′
)

∂n (x′)
G
(

x,x
′)

)

dx
′
,x ∈ ∂D (11)

and compute the values of E (x′) from
∂u(x′)
∂nl(x

′)
and

∂u(x′)
∂nr(x′)

. We

note that to solve the diffusion equation over an image, boundary
conditions at the image borders (or beyond the image borders) must
be specified. So in practice we always place a control curve at or
beyond the image borders for a given diffusion curve image.

4 Rendering with Diffusion Curve Textures

Given the Green’s function kernels on the control curves, the har-
monic function u (x) can be constructed according to Eq. (8). For
rendering purposes such as anti-aliasing, we wish to evaluate the
integral of u (x) over a rectangular region R instead of at just an
individual point x:

φ (R) =

∫∫

R

u (x) dx. (12)

Rendering with this function involves three components: integrat-
ing over the region R, integrating along each control curve B, and
accumulating contributions from all the control curves. We address
each of these components in this section.

4.1 Integration over a Rectangle

The integral of u (x) in Eq. (8) over a region R as in Eq. (12)
can be expressed in terms of integrations of the Green’s function
kernels G (x,x′) and Gn (x,x′) over the rectangular region R =
{x ∈ (x0, x1) , y ∈ (y0, y1)}:

φ (R) =

∫∫

R

∑

i

∫

Bi

Ci

(

x
′)

Gn

(

x,x
′)

dx
′

dx

−

∫∫

R

∑

i

∫

Bi

Ei

(

x
′)

G
(

x,x
′)

dx
′

dx (13)

A closed-form integral FG (R,x′) =
∫∫

R
G (x,x′) dx exists for

this Green’s function over a rectangular region R:

FG

(

R,x
′)

=
∑

i,j∈{0,1}

(−1)i+j

4π
HG (x̂, ŷ) (14)

HG (x̂, ŷ) = −3 x̂ŷ + x̂ŷ ln
(

x̂
2
+ ŷ

2
)

+ x̂
2
arctg

ŷ

x̂
+ ŷ

2
arctg

x̂

ŷ
. (15)

A closed-form integral FGn (R,x′) =
∫∫

R
Gn (x,x′) dx like-

wise exists for Gn:

FGn

(

R,x
′)

=
∑

i,j∈{0,1}

(−1)i+j

2π
HGn (x̂, ŷ, nx, ny) (16)

HGn (x̂, ŷ, nx, ny) = ny ŷ arctg

(

x̂

ŷ

)

+ nxx̂ arctg

(

ŷ

x̂

)

+
1

2
(ny x̂ + nxŷ) ln

(

x̂
2
+ ŷ

2
)

(17)

where x = (x, y), x′ = (x′, y′), n (x′) = (nx, ny), and (x̂, ŷ) =
x − x

′. Detailed derivations of Eq. (14) and Eq. (16) are provided
in Appendix A.

Eq. (14) and Eq. (16) are derived for an axially aligned rectangular
region, but are also valid for rotated rectangles since the Green’s
function G (x,x′) is rotationally symmetric about x′. We note that
though G (x,x′) has a singular point at x = x

′, it does not affect
the evaluation of HG (x̂, ŷ) and HGn (x̂, ŷ, nx, ny). An important
feature of the closed-form integrals FG (R,x′) and FGn (R,x′) is
that the computational load is constant for different sizes of R, in
contrast to sampling schemes which generally require greater com-
putation for larger regions.

With the control curve representation, we can compute Eq. (12) as

φ (R) =
∑

i

∫

Bi

(

Ci

(

x
′)

FG

(

R,x
′)

+ Ei

(

x
′)

FGn

(

R,x
′))

dx
′
. (18)

To rapidly solve Eq. (18), integration along control curves B and
accumulation of control curve contributions need to be performed
efficiently. These two problems are addressed in Section 4.2 and
Section 4.3.

4.2 Adaptive Sampling on Control Curves

To efficiently evaluate φ (R) in Eq. (18), we compute a piece-
wise constant approximation with respect to a set of sample points
{

x
′

i,j

}

along each control curve Bi:

φ (R) ≈
∑

i

∑

j

(

φ̄C

(

x
′
i,j

)

− φ̄E

(

x
′
i,j

))

l
(

x
′
i,j

)

(19)

where l
(

x
′

i,j

)

is the arc length between x
′

i,j and x
′

i,j+1,

and φ̄C

(

x
′

i,j

)

and φ̄E

(

x
′

i,j

)

are weighted kernels of

Ci

(

x
′

i,j

)

FGn

(

R,x′

i,j

)

and Ei

(

x
′

i,j

)

FG

(

R,x′

i,j

)

respec-

tively. Sampling with a small, uniform value of l
(

x
′

i,j

)

would be
inefficient over different levels of detail, so we propose an adaptive
sampling scheme.

Our adaptive scheme aims to sample points such that the error in
the piecewise constant approximation of Bi between neighbors x′

i,j

and x
′

i,j+1 falls below a given bound. We approximate this by se-
lecting sample points according to

∣

∣

∣

(

φ̄S

(

x
′
i,j+1

)

− φ̄S

(

x
′
i,j

))

/ φ̄S

(

x
′
i,j

)∣

∣

∣ < α, S ∈ {C,E} (20)

where α denotes a user-specified bound.

For a given sample point x′

i,j, the next sample x
′

i,j+1 cannot be
determined from Eq. (20) without evaluating different candidate
points. To avoid this inefficiency, we use the first order differen-
tial at x′

i,j to approximate the value at x′

i,j+1:

φ̄S

(

x
′
i,j+1

)

≈ φ̄S

(

x
′
i,j

)

+ φ̄
′
S

(

x
′
i,j

)

l
(

x
′
i,j

)

, S ∈ {C,E} (21)

where φ̄′

S

(

x
′

i,j

)

= ∂φ̄S

(

x
′

i,j

)

/∂t
(

x
′

i,j

)

and t
(

x
′

i,j

)

is the tan-

gent direction along the curve. We then can determine the arc length

l
(

x
′

i,j

)

from α:

l
(

x
′
i,j

)

= αmin
{∣

∣

∣φ̄S

(

x
′
i,j

)

/φ̄
′
S

(

x
′
i,j

)∣

∣

∣ , S ∈ {C,E}
}

. (22)

Since φ̄′

C and φ̄′

E can be solved analytically (see Appendix B), we
can determine l

(

x
′

i,j

)

through calculations only at x′

i,j . To sample

a control curve Bi, we start by placing the first sample x
′

i,0 at an

arbitrary endpoint, then iteratively place subsequent samples x′

i,j+1

based on computed values of l
(

x
′

i,j

)

until reaching the end.

(a) (b)

Figure 3: Control curve sampling. (a) Uniform sampling with more
than 500 samples along the control curve. (b) Adaptive sampling
requires only about 10 points to produce similar results at the blue
point (α = 0.02).

(a) (b)

Figure 4: Culling of control curves. (a) The control curves in blue
are enclosed by the control curve in red, so integration regions out-
side the red boundary can be computed independently of the blue
curves and the inner boundary values of the red curve. (b) Ar-
eas within the red control curve are unaffected by exterior control
curves and the outer boundary values of the red curve.

In this adaptive sampling scheme, we evaluate the sampling inter-
vals with respect to φ̄C

(

x
′

i,j

)

and φ̄E

(

x
′

i,j

)

individually instead of
together as the single term shown in Eq. (19). Since the two Green’s
function kernels produce different effects as shown in Fig. 2, we
wish to bound each of their piecewise constant approximation er-
rors, so we set the arc length in Eq. (22) to the minimum value
computed from among the two. As shown in Fig. 3, this adaptive
sampling scheme greatly reduces the sampling rate while maintain-
ing the rendering quality similar to that of dense uniform sampling.

4.3 Culling of control curves

In Eq. (18), φ is computed from all of the control curves, which can
be expensive when there is a large number of curves, even with the
adaptive sampling scheme. However, it is often possible to exclude
many control curves without compromising rendering quality.

Shown in Fig. 4(a), control curves that are enclosed by another con-
trol curve do not contribute to image values beyond the outer curve.
Only the outside boundary values of the outer curve need to be con-
sidered; the inside boundary values and the inner curves can be dis-
regarded. Likewise, regions enclosed by a control curve, as shown
in Fig. 4(b), are unaffected by exterior curves.

To facilitate culling, we identify areas enclosed by control curves,
and organize them hierarchically according to containment relation-
ships. With this preprocessing, unnecessary control curves can be
efficiently removed for a given integration region prior to adaptive
sampling.

Texture Figure
Number Storage Perf. Fitting

of curves (KBytes) (ms) (s)

Porcelain Fig. 1 (a) 37,020 2962 98 0

Zephyr Fig. 1 (b) 327 26 36 0.46

Frog Fig. 4 820 66 39 0.96

Coffee cup Fig. 9 (a) 3,321 266 49 0.87

Wood Fig. 9 (b) 2,698 216 60 660

Dragon Fig. 9 (c) 160 13 43 0.05

Table 1: Statistics and rendering performance for the texture data
shown in this paper. All images shown in this paper are rendered
with a resolution of 800× 600 and resized to fit the pages.

5 Experimental Results and Discussions

Texture generation Given a diffusion curve image, the texture is

generated by solving Eq. (11) with the normal derivatives
∂u(x′)
∂nl(x

′)

and
∂u(x′)
∂nr(x′)

. We uniformly sample a number of points {xi} along

the control curves, with a distance of l between each pair of adjacent
points. We denote the left and right sides of the curve at point xi as

x
0
i and x

1
i respectively. Then Eq. (11) is evaluated as

u
(

x
s
i

)

≈
∑

k

∑

j 6=i

l

u
(

x
k
j

)

Gn

(

x
s
i ,x

k
j

)

−
∂u
(

x
k
j

)

∂nk (xj)
G
(

x
s
i ,x

k
j

)

+
∑

k

u
(

x
k
i

)

Ḡn (s, k) −
∂u
(

x
k
i

)

∂nk (xi)
Ḡ (l)

. (23)

Ḡ and Ḡn are the analytic integrals of G (x,x′) and Gn (x,x′)
given in Eq. (9) and Eq. (10) respectively, with x → x

′ to avoid the
singularity:

Ḡ (l) =
1

2π

l/2
∫

l/2

ln |x| dx =
1

2π

(

−l + l ln
l

2

)

(24)

Ḡn (s, k) = (−1)
s+k

lim
x→0+

1

2π

l/2
∫

l/2

x

x2 + y2
dy =

(−1)s+k

2
. (25)

For regions enclosed by a curve with constant color values, such as
in the blue and white porcelain of Fig. 1 (a), this evaluation pro-
cedure can be skipped. If the texture includes regions enclosed
by a curve with color variations, as exhibited in the coffee cup of
Fig. 9 (a), then each of these regions can be evaluated indepen-
dently.

To derive a diffusion curve representation from a natural image,
such as Fig. 9 (b), we trace the edges in the image to obtain the
control curves and then solve for their colors and normal derivatives
from colors sampled throughout the image:

u (x̃i) ≈
∑

j,k

l

u
(

x
k
j

)

Gn

(

x̃i,x
k
j

)

−
∂u
(

x
k
j

)

∂nk (xj)
G
(

x̃i,x
k
j

)

 (26)

where points {x̃i} are uniformly sampled over the image, exclud-
ing points on the control curves. Since colors need to be fit in ad-
dition to the normal derivatives and |{x̃i}| ≫ |{xi}|, this process
requires much time.

Rendering on GPUs For high performance rendering of diffu-
sion curve textures, we developed a GPU algorithm that utilizes the
OpenGL pipeline to render each frame, with texture fetching and
computation implemented with NVidia CUDA [NVIDIA 2011].
The geometry, lighting, material and viewpoint are loaded into the
OpenGL pipeline. The control curves are loaded into the global
memory of CUDA. To render a frame, we compute the transforma-
tion, culling, shadow testing, and material shading in the OpenGL

(a) (b) (c) (d)

Figure 5: A vase covered with diffusion curve textures of different
complexity. From left to right, the numbers of control curves are
5K, 10K, 20K and 37K respectively.

Number of
5,309 10,747 20,505 37,020

control curves

Adaptive sampling
0.020 s 0.043 s 0.076 s 0.098 s

with curve culling

Adaptive sampling
0.600 s 1.763 s 4.104 s 7.938 s

w/o curve culling

Uniform sampling
39.60 s 114.6 s 242.1 s 444.5 s

w/o curve culling

Resulting image
(a) (b) (c) (d)

in Fig. 5

Table 2: Rendering performance with different numbers of control
curves and different rendering algorithms.

pipeline. At the beginning of the fragment shader, we apply a sep-
arate pass to extract the texture coordinates and the corresponding
DDX and DDY for each fragment. Then we switch to CUDA pro-
cessing with this data. The texture coordinates represent the center
of the integration region, while the DDX and DDY represent the
orientation of the region as well as the length of the two correspond-
ing dimensions. After that, we integrate the texture value for each
pixel with the algorithm described above. Finally, the integration
values are transported back to the OpenGL pipeline as a texture for
subsequent shading in the fragment shader.

Performance We implemented our algorithm on a PC with two
Intel Xeon E5620 2.44 GHz CPUs and an NVidia GeForce GTX
480 graphics card with 1 GB of graphics memory. Table 1 lists
the statistics and rendering performance for all of the texture data.
As shown in the table, our method renders all of these examples
in real time. Diffusion curve textures are generated from DCIs at
interactive rates. With a natural image such as the wood in Fig. 9 (b)
as input, diffusion curve texture generation takes substantially more
time as previously discussed.

To test the performance of our rendering method for diffusion curve
textures with different levels of complexity, we constructed four dif-
fusion curve textures with different numbers of control curves (5K,
10K, 20K and 37K respectively) and mapped them onto the same
vase model as shown in Figure 5. To examine the effects of the
two rendering acceleration schemes, we rendered each texture us-
ing three implementations: full algorithm, without curve culling,
and without both adaptive sampling and curve culling. Table 2 lists
the performance results for the four textures. It shows that the adap-
tive sampling scheme provides a 10× speedup over the implemen-
tation without it, while the curve culling scheme further improves
the rendering speed by two orders of magnitude. Note that both
acceleration schemes are based on the explicit texture representa-
tion proposed in this paper. With these two schemes, the rendering
performance of our method decreases sub-linearly as the number of
control curves increases.

The rendering cost is linearly dependent on the number of curve

Figure 6: Rendering for close-up views. The top row rendered with
our diffusion curve texture maintains sharp boundaries. The middle
row rendered with a rasterized texture of resolution 4096 × 4096
exhibits blur when zooming in. The bottom row shows that the sam-
pling rates with our rendering method remain almost unchanged
through the zoom sequence. Our rendering times are 76 ms, 76 ms,
70 ms, and 64 ms from left to right.

sampling points, as the most computationally expensive part in ren-
dering is the evaluation of Green’s function kernels. Culling of con-
trol curves significantly reduces this cost without requiring much
overhead. The number of sampling points is also considerably less-
ened by our adaptive sampling scheme, which is based on the ob-
servation that the final color of a pixel is influenced more by inter-
secting or nearby control curves than by distant ones. The adap-
tive scheme densely samples along neighboring control curves and
sparsely samples along curves farther away. This leads to artifact-
free textures without the prohibitively heavy rendering cost that
would result from dense sampling of all the control curves.

Anti-aliasing For a given diffusion curve texture, our method can
compute the anti-aliased texture value for each pixel in almost con-
stant time. As a result, the rendering performance of our method
is proportional to only the screen resolution and independent of the
viewpoint and model complexity. The top row of Figure 6 displays
rendering results of our method for the vase under close-up views
that magnify the porcelain texture mapped over the surface. With
just 3 MB of texture data, our method maintains the resolution inde-
pendence of diffusion curve images and preserves the sharp edges
of the texture pattern in all of the close-up views. By contrast, the
results rendered from a 4096 × 4096 raster texture cannot main-
tain the sharp edges of the texture pattern in the most close-up view
(shown in the second row of Figure 6). The bottom row of Fig-
ure 6 displays grayscale maps that encode the computational cost
for each pixel, which is determined by the number of control curve
samples that contribute to it. As the viewpoint moves closer to the
object, the computational cost of corresponding pixels is almost un-
changed, since the pixel areas generally receive contributions from
the same control curve samples.

Figure 7 compares the rendering results generated by our method
and the anti-aliased results rendered from a mipmapped raster tex-
ture under a series of zoomed-out views. In these zoom-outs, each
pixel covers a relatively large region in the texture domain and thus
contains many sharp, detailed features. For this texture minifi-
cation case, our solution generates results similar to the conven-
tional mipmap solution. However, our method is based on a com-
pact vector representation that needs no extra storage and compu-

Figure 7: Rendering for zoomed-out views. The top row is rendered
with our diffusion curve texture. The middle row is rendered with
a rasterized texture of resolution 8192 × 8192, which generates
results similar to our method. The bottom row shows the sampling
rates with our method. Our rendering times are 74 ms, 76 ms, 82
ms, and 88 ms from left to right.

tation for this rendering task, while the raster-based solution needs
a 8192 × 8192 bitmap to represent all the high frequency details
and an extra mipmap for anti-aliased rendering. The bottom row of
Figure 7 shows a grayscale map of the computational cost. Similar
to the texture magnification case, the computational cost of corre-
sponding pixels is fairly stable across the four renderings.

Results Figure 1 shows two objects mapped with diffusion curve
textures designed by an artist. The color and texture variations at
different scales (e.g. the smooth color variations and the rich texture
variations) are effectively modeled and rendered by our method.

Figure 9 (a) displays renderings of a coffee cup using our method.
Note that the subtle shading details and sharp features in the dif-
fusion curve texture are well preserved for this and the remaining
examples in this section. In a diffusion curve image, boundary col-
ors are taken to be piecewise linear between the color control points,
but the corresponding normal derivatives are not. Since we linearly
interpolate the normal derivatives between the same set of control
points, there may be some color leakage along the curve. This prob-
lem can be alleviated by incorporating more control points. Finding
a more efficient representation of normal derivatives is a direction
for future work.

Figure 9 (b) illustrates the rendering results of a sculpture model.
The diffusion curve texture of the wood pattern is obtained by fitting
diffusion curves to a rasterized image of the wood texture. Our
rendering results accurately convey the natural color variations and
sharp boundaries of the wood pattern under the different views.

Figure 9 (c) exhibits the renderings of a dragon model decorated
with complicated color patterns designed by an artist using a diffu-
sion curve authoring tool [Orzan et al. 2008]. In this example, both
the geometric shapes and texture patterns are complicated, which
makes it a challenge for existing diffusion curve rendering meth-
ods [Jeschke et al. 2009b; Jeschke et al. 2009a]. Our method well
models the complicated color patterns and rich color variations, and
generates convincing anti-aliased rendering results. Please see the
supplemental video for more rendering results with these models.

(a) (b) (c)

Figure 8: Close-ups of the blue and white porcelain texture show-
ing detailed features. (a) Texture reconstructed by the Green’s
function kernels. (b)(c) Texture reconstructed by Jeschke’s GPU
solver [2009a] at a resolution of 2048×2048 and 4096×4096 re-
spectively, then rendered with the method of [Jeschke et al. 2009b].

Discussion Since the Green’s function kernels are an explicit
representations of DCIs, our method differs substantially from pre-
vious methods as it can directly compute image values at arbitrary
positions and support random access without a predefined resolu-
tion. Sharpness is maintained at close inspection, while smooth
anti-aliasing is provided with minified viewing. The storage is both
compact and independent of the level of zoom. By contrast, previ-
ous implicit solutions obtain results by solving diffusion equations
over a grid, which requires prohibitive computation and storage for
high magnifications. Jeschke et al. [2009b] solved this problem by
proposing an efficient dynamic feature embedding technique that
produces crisp, anti-aliased curve details. However, it still needs
a reconstructed texture with sufficient resolution which makes sure
each pixel only contains at most one control curve. If more than
one control curve passes through a pixel, the undersampled details
between the control curves cannot be recovered in magnification. A
higher grid resolution would be needed to adequately sample these
detailed features. This problem is illustrated in Fig. 8 with the
method of [Jeschke et al. 2009b]. Because of the numerous con-
trol curves in the texture, it takes 0.3s and 170 MBytes of video
memory to solve the DCI at a low resolution (2048 × 2048) that
does not fully capture the detailed features in magnification. To
generate a result comparable to ours, a higher resolution texture
of at least 4096 × 4096 needs to be solved, at a cost of 0.5s and
552MBytes of video memory. In Jeschke et al. [2009b], the texture
is warped according to the view so that it provides sufficient reso-
lution in magnified areas while reducing the resolution in minified
areas. While this works well for sparsely distributed control curves,
aliasing problems arise in minification for pixels that include multi-
ple curves. Moreover, the warping scheme requires a good surface
parameterization for the texture atlas, which is a challenging task
for surfaces of complex geometry or high genus (e.g. the dragon
and sculpture in Fig. 9). Ours only needs the texture coordinates of
each pixel for rendering, and is independent of the texture mapping
method.

6 Conclusion

We presented diffusion curve textures based on Green’s functions
for anti-aliased texture mapping of diffusion curve images. Our
technique yields exact reconstructions of DCIs, and our GPU im-
plementation provides real-time rendering performance.

The most significant limitation of diffusion curve textures is the
overhead for calculating the weights of the Green’s function ker-
nels, which depends on normal derivatives along the control curves.
While diffusion curve images may be authored using the system
in [Orzan et al. 2008], this overhead in converting diffusion curves
into our representation causes a delay before the diffusion curve
texture can be used. Our technique nevertheless achieves interac-

tive performance with a DCI as input, and we leave real-time tex-
ture generation from dynamic DCI input for future work. Faster
processing may potentially be obtained by further optimizing the
scheme for control curves culling, which can greatly reduce the sys-
tem scale, and by developing a GPU implementation.

We also will seek to speed up other components of the rendering
algorithm. For example, our current method for culling control
curves considers only closed boundaries. Additionally removing
open curve segments that are distant from the rendering point could
lead to further computational savings. We also would like to extend
our framework to other differential operators that may be used in
vector image creation, such as the bilaplacian. Diffusion surfaces
are another interesting extension, as Green’s function kernels can
be derived similarly for them.

Acknowledgements
We would like to thank the reviewers for their valuable comments.
Guofu Xie and Wencheng Wang were partially supported by NSF
of China (60833007).

References

BAYIN, Ş. 2006. Mathematical methods in science and engineer-
ing. Wiley-Interscience.

BEZERRA, H., EISEMANN, E., DECARLO, D., AND THOLLOT,
J. 2010. Diffusion constraints for vector graphics. In Proceed-
ings of the 8th International Symposium on Non-Photorealistic
Animation and Rendering, ACM, New York, NY, USA, NPAR
’10, 35–42.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖODER, P.
2003. Sparse matrix solvers on the gpu: conjugate gradients
and multigrid. ACM Trans. Graph. 22 (July), 917–924.

BOWERS, J. C., LEAHEY, J., AND WANG, R. 2011. A Ray Trac-
ing Approach to Diffusion Curves. Computer Graphics Forum
30, 4, 1345–1352.

D’EON, E., AND IRVING, G. 2011. A quantized-diffusion model
for rendering translucent materials. ACM Trans. Graph. 30
(Aug.), 56:1–56:14.

ELDER, J., AND GOLDBERG, R. 2001. Image editing in the con-
tour domain. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 23, 3 (mar), 291 –296.

FARBMAN, Z., FATTAL, R., AND LISCHINSKI, D. 2011. Convo-
lution pyramids. ACM Trans. Graph. 30 (Dec.), 175:1–175:8.

FINCH, M., SNYDER, J., AND HOPPE, H. 2011. Freeform vector
graphics with controlled thin-plate splines. ACM Trans. Graph.
30 (Dec.), 166:1–166:10.

JESCHKE, S., CLINE, D., AND WONKA, P. 2009. A gpu laplacian
solver for diffusion curves and poisson image editing. In ACM
SIGGRAPH Asia 2009 papers, ACM, New York, NY, USA, SIG-
GRAPH Asia ’09, 116:1–116:8.

JESCHKE, S., CLINE, D., AND WONKA, P. 2009. Rendering
surface details with diffusion curves. ACM Trans. Graph. 28
(December), 117:1–117:8.

KAZHDAN, M., AND HOPPE, H. 2008. Streaming multigrid for
gradient-domain operations on large images. ACM Trans. Graph.
27 (August), 21:1–21:10.

LAI, Y.-K., HU, S.-M., AND MARTIN, R. R. 2009. Auto-
matic and topology-preserving gradient mesh generation for im-
age vectorization. ACM Trans. Graph. 28 (July), 85:1–85:8.

LECOT, G., AND LEVY, B. 2006. Ardeco: Automatic region detec-
tion and conversion. In Eurographics Symposium on Rendering.

LIPMAN, Y., LEVIN, D., AND COHEN-OR, D. 2008. Green co-
ordinates. In ACM SIGGRAPH 2008 papers, ACM, New York,
NY, USA, SIGGRAPH ’08, 78:1–78:10.

NEHAB, D., AND HOPPE, H. 2008. Random-access rendering
of general vector graphics. ACM Trans. Graph. 27 (December),
135:1–135:10.

NVIDIA, 2011. CUDA programming guide 4.0, May.
http://developer.nvidia.com/object/cuda.html.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P.,
THOLLOT, J., AND SALESIN, D. 2008. Diffusion curves: a
vector representation for smooth-shaded images. In ACM SIG-
GRAPH 2008 papers, ACM, New York, NY, USA, SIGGRAPH
’08, 92:1–92:8.

PANG, W., QIN, J., COHEN, M., HENG, P., AND CHOI, K. 2011.
Fast rendering of diffusion curves with triangles. Computer
Graphics and Applications, IEEE PP, 99, 1.

QIN, Z., MCCOOL, M. D., AND KAPLAN, C. S. 2006. Real-
time texture-mapped vector glyphs. In Proceedings of the 2006
symposium on Interactive 3D graphics and games, ACM, New
York, NY, USA, I3D ’06, 125–132.

QIN, Z., MCCOOL, M. D., AND KAPLAN, C. 2008. Precise
vector textures for real-time 3d rendering. In Proceedings of the
2008 symposium on Interactive 3D graphics and games, ACM,
New York, NY, USA, I3D ’08, 199–206.

RAMANARAYANAN, G., BALA, K., AND WALTER, B. 2004.
Feature-Based Textures. Eurographics Symposium on Render-
ing.

SEN, P., CAMMARANO, M., AND HANRAHAN, P. 2003. Shadow
Silhouette Maps. ACM Transactions on Graphics (TOG) (Pro-
ceedings of SIGGRAPH 2003) 22, 3, 521–526.

SEN, P. 2004. Silhouette maps for improved texture magnifica-
tion. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, ACM, New York, NY, USA,
HWWS ’04, 65–73.

SUN, J., LIANG, L., WEN, F., AND SHUM, H.-Y. 2007. Im-
age vectorization using optimized gradient meshes. ACM Trans.
Graph. 26 (July).

TAKAYAMA, K., SORKINE, O., NEALEN, A., AND IGARASHI, T.
2010. Volumetric modeling with diffusion surfaces. ACM Trans.
Graph. 29 (December), 180:1–180:8.

TARINI, M., AND CIGNONI, P. 2005. Pinchmaps: textures with
customizable discontinuities. Computer Graphics Forum 24, 3,
557–568.

TUMBLIN, J., AND CHOUDHURY, P. 2004. Bixels: Picture sam-
ples with sharp embedded boundaries. In Rendering Techniques,
255–264.

WANG, L., ZHOU, K., YU, Y., AND GUO, B. 2010. Vector solid
textures. ACM Trans. Graph. 29 (July), 86:1–86:8.

WANG, L., YU, Y., ZHOU, K., AND GUO, B. 2011. Multiscale
vector volumes. ACM Trans. Graph. 30 (Dec.), 167:1–167:8.

XIA, T., LIAO, B., AND YU, Y. 2009. Patch-based image vec-
torization with automatic curvilinear feature alignment. ACM
Trans. Graph. 28 (December), 115:1–115:10.

(a) (b)

(c)

(d)

Figure 9: Some results rendered with diffusion curve textures. (a) A coffee cup that exhibits both subtle shading details and sharp features.
(b) A sculpture mapped with wood texture obtained by fitting diffusion curves to a rasterized texture image. (c) A frog model with a diffusion
curve texture designed using a diffusion curve authoring tool. (d) A dragon model with abundant geometry details.

Appendix A

In the following, we provide a detailed derivation of Eq. (14) and Eq. (16).

Based on Eq. (9), the indefinite integral of the Green’s function G
(

R,x′
)

can evalu-

ated analytically with the substitution of x̂ = (x̂, ŷ) for x − x
′:

∫∫

G
(

x,x
′)

dx =
1

2π

∫ (∫

ln
√

x̂2 + ŷ2 dx̂

)

dŷ

=
1

4π

∫ (

−2x̂ + x̂ ln
(

x̂
2
+ ŷ

2
)

+ 2ŷ arctg

(

x̂

ŷ

)

+ A0 (ŷ)

)

dŷ

=
1

4π

(

−3x̂ŷ + x̂ŷ ln
(

x̂
2
+ ŷ

2
)

+ x̂
2
arctg

(

ŷ

x̂

)

+ ŷ
2
arctg

(

x̂

ŷ

))

+ A1 (x̂) + A2 (ŷ) =
1

4π
HG (x̂, ŷ) + A1 (x̂) + A2 (ŷ) . (27)

{Ai} are arbitrary functions because of the indefinite integrals. HG is given in

Eq. (15), and Eq. (14) is obtained from it accordingly.

Similarly, the indefinite integral of the normal derivative Gn

(

x,x′
)

from Eq. (10) is

solved as
∫∫

Gn

(

x,x
′)

dx =
1

2π

∫ (∫

x̂ nx + ŷ ny

x̂2 + ŷ2
dx̂

)

dŷ

=
1

2π

∫ (

ny arctg

(

x̂

ŷ

)

+
nx

2
ln
(

x̂
2
+ ŷ

2
)

+ A0 (ŷ)

)

dŷ

=
1

2π

(

ny ŷ arctg

(

x̂

ŷ

)

+ nxx̂ arctg

(

ŷ

x̂

)

+
1

2
(ny x̂ + nxŷ) ln

(

x̂
2
+ ŷ

2
)

)

+ A1 (x̂) + A2 (ŷ) =
1

2π
HGn (x̂, ŷ, nx, ny) + A1 (x̂) + A2 (ŷ) (28)

where HGn is given in Eq. (17) and Eq. (16) is determined from it.

Appendix B

Here, we derive the analytical form of φ̄′
C

(

x
′
i,j

)

and φ̄′
E

(

x
′
i,j

)

used to compute

Eq. (22).

From Eq. (19) and Eq. (21), we can express φ̄′
E

(

x
′
)

as

φ̄
′
E

(

x
′)

=
∂E
(

x
′
)

∂t (x′)
FG

(

R,x
′)

+ E
(

x
′) d

dx′
FG

(

R,x
′)

· t
(

x
′)

(29)

where the differential of FG is dependent on the differential of HG, which we com-

pute from Eq. (15) as

∂

∂x′
HG (x̂, ŷ) = −2x̂ arctg

(

ŷ

x̂

)

+ ŷ
(

2 − ln
(

x̂
2
+ ŷ

2
))

;

∂

∂y′
HG (x̂, ŷ) = −2ŷ arctg

(

x̂

ŷ

)

+ x̂
(

2 − ln
(

x̂
2
+ ŷ

2
))

(30)

where x̂ = xi − x′ and ŷ = yi − y′.

Similarly, we obtain φ̄′
C

(

x
′
)

based on Eq. (16) and Eq. (17):

φ̄
′
C

(

x
′)

=
∂C
(

x
′
)

∂t (x′)
FGn

(

R,x
′)

+ C
(

x
′) d

dx′
FGn

(

R,x
′)

· t
(

x
′)

(31)

where the differential of FGn is dependent on the differential on HGn computed

from Eq. (17):

∂

∂x′
HGn (x̂, ŷ, nx, ny) = −ny −

(

nx +
∂nx

∂x′
x̂

)

arctg

(

ŷ

x̂

)

−
∂ny

∂x′
ŷ arctg

(

x̂

ŷ

)

−
1

2

(

ny +
∂ny

∂x′
x̂ +

∂nx

∂x′
ŷ

)

ln
(

x̂
2
+ ŷ

2
)

;

∂

∂y′
HGn (x̂, ŷ, nx, ny) = −nx −

(

ny +
∂ny

∂y′
ŷ

)

arctg

(

x̂

ŷ

)

−
∂nx

∂y′
x̂ arctg

(

ŷ

x̂

)

−
1

2

(

nx +
∂nx

∂y′
ŷ +

∂ny

∂y′
x̂

)

ln
(

x̂
2
+ ŷ

2
)

. (32)

As
∂C(x′)
∂t(x′)

,
∂E(x′)
∂t(x′)

,
∂n(x′)
∂t(x′)

and
dn(x′)

dx′ can be obtained from the control curves,

φ̄′
C

(

x
′
)

and φ̄′
E

(

x
′
)

can be calculated analytically as above.

