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Figure 1: Renderings of high-resolution SVBRDFs reconstructed by our method from two-phase, low-dimensional captured data. (a) Anisotropic brushed
metal. (b) Satin with complex needlework. (c) Wrinkled glossy paper. (d) Weathered copper.

Abstract
Manifold bootstrapping is a new method for data-driven modeling
of real-world, spatially-varying reflectance, based on the idea that
reflectance over a given material sample forms a low-dimensional
manifold. It provides a high-resolution result in both the spatial
and angular domains by decomposing reflectance measurement into
two lower-dimensional phases. The first acquires representatives
of high angular dimension but sampled sparsely over the surface,
while the second acquires keys of low angular dimension but sam-
pled densely over the surface.

We develop a hand-held, high-speed BRDF capturing device for
phase one measurements. A condenser-based optical setup col-
lects a dense hemisphere of rays emanating from a single point
on the target sample as it is manually scanned over it, yielding
10 BRDF point measurements per second. The second phase cap-
tures N=20-200 images of the entire sample from a fixed view
and lit by a varying area source. We show that the resulting N-
dimensional keys capture much of the distance information in the
original BRDF space, so that they effectively discriminate among
representatives, though they lack sufficient angular detail to recon-
struct the SVBRDF by themselves. At each surface position, a lo-
cal linear combination of a small number of neighboring represen-
tatives is computed to match each key, yielding a high-resolution
SVBRDF. A quick capture session (10-20 minutes) on simple de-
vices yields results showing sharp and anisotropic specularity and
rich spatial detail.

1 Introduction
Real-world materials exhibit rich and detailed reflectance vari-
ation, which must be modeled or acquired to produce realis-
tic CG imagery. Surface reflectance is represented by the six-
dimensional spatially varying bidirectional reflectance distribution
function (SVBRDF) ρ(x, i,o) [Nicodemus et al. 1977], describing
how much radiance reflects at each surface point x when viewed
from direction o and lit from direction i. The parameter x repre-
sents the spatial domain component while i× o represents the an-
gular domain component. Brute force capture requires hours of
measurement and processing, using large, expensive hardware rigs.
This impracticality of SVBRDF measurement greatly limits its use
in CG applications.

Our goal is to simplify SVBRDF measurement by eliminating
the collection of redundant data and doing the acquisition on sim-

ple, inexpensive devices. Several methods [Debevec et al. 2000;
Gardner et al. 2003] attempt to do this by fitting a simple para-
metric model to the BRDF at each point using data taken from
a sparse set of view and light directions. However, these models
are generic, based on just a few parameters, and lack the power to
capture real materials [Ngan et al. 2005]. Spatial redundancy has
also been exploited to speed up SVBRDF acquisition, but previ-
ous methods again depend on ill-fitting parametric models [Lensch
et al. 2003; Debevec et al. 2004; Goldman et al. 2005] or require
dense sampling over both the spatial and angular domains to obtain
a high-resolution result [Zickler et al. 2005; Weyrich 2006; Wang
et al. 2008; Alldrin et al. 2008].

We propose manifold bootstrapping for modeling high-
resolution surface reflectance from sparse captured data. We as-
sume that spatial reflectance variation over a particular capture tar-
get forms a low-dimensional manifold in high-dimensional BRDF
space. Manifolds are locally but not globally linear. More precisely,
arbitrary linear combinations of points on the BRDF manifold do
not generally lie on the manifold and instead generate implausible
BRDFs [Matusik et al. 2003a]. On the other hand, linear combina-
tions of nearby points provide a good approximation to the mani-
fold’s local structure, via local linear embedding [Roweis and Saul
2000].

These ideas let us to separate acquisition into two lower-
dimensional phases. The first captures the BRDF manifold spe-
cialized to a given material while the second determines the precise
position on that manifold occupied at each x. Specifically, the first
phase captures a set of full-resolution BRDF representatives (short-
ened to representatives), at scattered points on the surface whose
location is ignored. The second phase captures a set of reflectance
measurements densely over the surface but sparsely in the angu-
lar domain; specifically, under only a few different lighting con-
ditions called the key measurements. This yields at each x a low-
dimensional key vector, in which each component represents the
material’s appearance with respect to a different key measurement.
For each x, we reconstruct a high-resolution BRDF by computing
a linear combination of neighbor representatives whose response
to the key measurements matches the measured key at x. A small
number of key measurements suffices to roughly preserve distance
in the high-dimensional BRDF space and determine how the BRDF
manifold is spatially mapped.

Our method handles bumpy and anisotropic materials having
spatially-varying normal and tangent vectors. To avoid unduly



lengthy scanning in phase one, we synthetically enlarge the repre-
sentative set. For bumpy surfaces, we enlarge by applying a discrete
series of normal tilts to each original representative. Similarly, for
anisotropic surfaces we amplify based on discrete azimuthal rota-
tions. We then bootstrap as before against the enlarged set.

Manifold bootstrapping is a new and general approach for ac-
quiring complex, spatially-varying surface reflectance, including
isotropic or anisotropic, and diffuse to highly specular materials. It
simplifies SVBRDF acquisition by decomposing it into two novel
phases. For phase one capture, we develop a portable device for
microfacet BRDF acquisition. The device is based on a pair of con-
denser lenses and captures hundreds of representative points in a
few minutes of scanning. For phase two capture, we obtain good
results using a small number (20-200) of key measurements based
on varying lighting and a fixed view. We develop a novel scal-
ing method that handles non-orthogonal lighting variation, allow-
ing area/environmental light sources that can be freely moved but
need not be exactly controlled. We show that an area source pro-
vides better distance discrimination compared to impulsive lighting
used in previous work. Overall, our approach provides a practical,
inexpensive, and high-quality solution for on-site reflectance acqui-
sition which we demonstrate on a set of real materials.

2 Related Work

2.1 Brute Force Acquisition

A set of spatial gonioreflectometers directly measures
SVBRDFs [Dana et al. 1999; McAllister et al. 2002; Lawrence
et al. 2006], BTFs [Dana 2001; Muller et al. 2005], and reflectance
fields [Garg et al. 2006]. These methods densely sample the
angular domain of view and light directions as well as the spatial
domain. In all cases, special rigs are needed and the 6D datasets are
huge and require hours to collect and process. Han et. al. [2003]
developed a kaleidoscope-based compact device for quickly
measuring BTFs. Although this device can be used for SVBRDF
acquisition, the angular resolution is limited.

Image-based approaches [Marschner et al. 1999; Lu et al. 1998]
capture a 4D BRDF from a convex object having spatially ho-
mogeneous reflectance. These methods ignore spatial variation.
Recently, several devices [Mukaigawa et al. 2007; Moshe et al.
2008] have been proposed for fast BRDF measurement. Our phase
one capture device is based on optical principles similar to those
in [Mukaigawa et al. 2007], but is designed for quick scanning over
different surface points.

2.2 Data Driven Modeling

Matusik et al. [2003a] investigate the dimensionality of BRDF
space by analyzing more than 100 isotropic BRDFs. Wang et
al. [2006] reconstruct the BRDF manifold from samples over the
surface and from these predict reflectance variation over time.
Lawrence et al. [2006] develop an automatic method to estimate
a lower-dimensional BRDF basis from measured data, to simplify
rendering and editing. None of these methods is designed for the
acquisition problem itself and instead uses measured SVBRDF data
as input for further compression or prediction.

Exploiting Angular Redundancy Gardner et al. [2003] scan the
surface with a linear light source and capture its reflectance from a
fixed view. An isotropic Ward model is then fit to the captured
data at each point. Such a model is too weak to accurately capture
angular variation of many real-world materials. By constraining the
material to human skin, Debevec et al. [2000] capture SVBRDFs of
the human face from a fixed view and dense lightings.

Single Pass Methods Another class of methods exploits coher-
ence in both the angular and spatial domain components using a sin-
gle data collection pass. Lensch et al. [2003] reconstruct SVBRDFs

of a real object of known geometry. BRDFs are grouped into a
small set each fit using a Lafortune model basis, and reflectance
at every point is represented as a linear combination over this ba-
sis. Goldman et al. [2005] use the same linear combination idea
but with an isotropic Ward model as the BRDF basis, to recon-
struct both an object’s shape and its SVBRDF from sparse mea-
surements. These methods capture spatial variation, but miss de-
tails in the BRDF’s anisotropy, specularity, and other types of an-
gular variation, because they merge angular information from dif-
ferent spatial samples. [Zickler et al. 2005] models the SVBRDF
using six-dimensional radial basis functions. By assuming isotropic
reflectance that varies smoothly over space, BRDF fitting at each
point can exploit sparse reflectance data by using information from
neighboring points. Our approach makes no assumptions about the
material’s spatial distribution, which in general may not be spa-
tially smooth. Recently, Alldrin et. al. [2008] extend the lin-
ear combination idea using an isotropic bivariate function as the
BRDF basis. It is not clear how to extend this method for modeling
anisotropic SVBRDFs. [Wang et al. 2008] models anisotropic sur-
face reflectance from data captured from a single view and dense
lighting directions, based on the general microfacet model. Recon-
struction involves merging data from surface points having similar
reflectance properties (i.e., similar partial NDFs). The method re-
quires dense measurements over both space and lighting direction.

In general, methods based on a single data collection pass can
not avoid the need for huge datasets to capture both spatial and
angular details of complicated reflectance. By acquiring data in
two separate passes, the first for angular and the second for spatial
variation, our method significantly reduces the data and thus time
needed for capture.

Two Pass Methods Some recent methods perform a form of
two-step bootstrapping. To obtain surface reflectance of large out-
door scenes, Debevec et al. [2004] measure a set of representative
BRDFs from small regions of the scene using controlled lighting,
as well as images of the entire scene under natural lighting. At
each scene point, the Lambertian color is recovered and its BRDF
is modeled as a linear combination of two representative BRDFs
whose diffuse colors are most similar to the point’s. This approach
works well for the specific application targeted, but fails in general
when surface points have similar diffuse colors but different spec-
ular reflectance. We generalize the concept of key measurement,
as well as the bootstrapping procedure, to enable capture of a wide
range of materials.

Matusik et al [2003b] represents an isotropic BRDF as a lin-
ear combination of 100 BRDFs chosen from an existing database.
Based on this reconstruction, another BRDF can be optimally pro-
jected using about 800 measurements. Similarly, [Weyrich 2006]
represents the reflectance of human skin as a linear combination
of a set of isotropic BRDFs manually selected from an existing
database. Weights for each surface point are computed via non-
negative matrix factorization (NMF), based on data that is densely
acquired from 15 views and 300 light directions. Our approach
handles both isotropic and anisotropic BRDFs. Most significantly,
it measures many more representatives that are specialized to each
particular sample, in order to further reduce by 1-2 orders of mag-
nitude the spatially dense “key” measurements needed in its second
phase. We also allow keys measured under area light sources with
non-orthogonal variation.

Wang et al. [2009] propose an efficient two-pass method based
on Kernel Nyström to acquire fixed-view light transport from sparse
measurements and allow image relighting. This is a different and
lower-dimensional problem than reflectance acquisition, which de-
pends on both view and light directions. Lasers and precisely-
controlled lighting are used for acquisition in a dedicated dark lab-
oratory, while our goal is to acquire SVBRDFs without complex
control of the light sources and environment. Most important, their



Figure 2: SVBRDF bootstrapping. A key vector at each spatial position
x is projected to the space of matching vectors to determine a local linear
embedding. The linear weights and neighborhood indices are then applied
the full-resolution representatives to reconstruct the BRDF at x.

matrix reconstruction algorithm assumes global linearity of light
transport and so is inappropriate for reconstructing the BRDF man-
ifold.

3 SVBRDF Manifold Bootstrapping

This section introduces the basic theory of manifold bootstrapping
for SVBRDF capture. Device setup and data acquisition are de-
scribed in the next section.

3.1 Representative and Key Measurement

Representative Measurement In the first phase, we capture
a set of M high-resolution representative BRDFs, indexed by p
and denoted B∗ = {b∗p(o, i) | p = 1,2, . . .M}. To represent BRDFs,
each representative vector, b∗p, comprises Nb = No×Ni samples, No
over viewing directions and Ni over lighting directions. We assume
this set of representatives adequately samples the BRDF manifold
across the surface.

To uniformly sample the BRDF manifold, we cull nearly iden-
tical representatives if their distance is less than ε , fixed at 10% of
the average distance over all pairs of nearest neighbors.

Key Measurement The second phase measures a low-
dimensional set of keys, or reflectance responses over the whole
sample. Critical to bootstrapping is a set of key measurements
that is still able to accurately discriminate BRDF features. Previ-
ous work [Lawrence et al. 2006; Wang et al. 2008] has shown that
many BRDFs are well-characterized by a single 2D BRDF slice;
i.e., by measurements with respect to varying lighting but a fixed
view. This is because specular reflectance for many real-world ma-
terials can be represented using the microfacet model [Cook and
Torrance 1982], which expresses a complex 4D BRDF in terms of
a simpler, 2D normal distribution function (NDF). The NDF can
then be inferred by measuring data which covers the hemisphere of
half-angle vectors midway between view and light directions,

h = (o+ i)/‖o+ i‖. (1)

This is clearly possible from measurements which vary the light-
ing but fix the view. The microfacet model will be used again and
discussed in more detail in the next section. Note that the fact that
real materials are captured by the microfacet model does not imply
that they can be captured by simple parametric models: real-world
NDFs are complicated and require tabulation or more sophisticated
modeling [Ngan et al. 2005; Wang et al. 2008].

The view direction, o∗, is chosen to be 45◦ from directly over-
head. The provides the best coverage of half-angle vectors as the
light source is varied.

Our key measurement captures N images of the material sam-
ple, each indexed by j and acquired from a fixed view direction o∗

and under a known but varying source radiance field L j . The mea-
sured reflectance responses at each point x provide constraints on
integrals of the BRDF bx(i,o) , via

r j(x) =
∫

Ω+(n)
bx(i,o∗)(n · i)L j(i)di, (2)

where n is the surface normal and o∗ and L j are the view direction
and source radiance fields for the j-th key measurement, respec-
tively.

Assembling all N reflectance responses at surface point x into an
N-dimensional key vector, rx =

(
r1(x),r2(x), · · · ,rN(x)

)T , we can
represent (2) in matrix form as

rx = Rbx, (3)

where bx is the BRDF vector at x. The N×Nb key measurement
matrix, R, converts sampled BRDFs to key measurements and is
given by

R jk =
{

(n · iki)L j(iki), oko = o∗
0, otherwise. (4)

The indices ko and ki decompose the overall index k of the packed
BRDF vector bx into its constituent view and lighting directions,
via k = koNi + ki. In fact, the dimensionality of R is really only
N×Ni (not N×Nb), because it is based on a single view and so has
no response to view vectors other than o∗.

3.2 Manifold Bootstrapping Overview

Given the previous two-phase measurement of a material sam-
ple, our method combines the two to reconstruct a high-resolution
SVBRDF as shown in Figure 2.

Local BRDF Reconstruction Interpolation of distant BRDFs
leads to implausible reflectance, as demonstrated in [Matusik et al.
2003a] for isotropic BRDFs of different (spatially homogeneous)
materials. For anisotropic BRDFs, the problem is even worse (see
Figure 10f). We solve this problem by bootstrapping using local
reconstruction, which interpolates only over nearby representatives.
We assume that the local dimensionality of the BRDF manifold is
constant.

Mathematically, a particular BRDF bx at a spatial position x can
be represented as a convex linear combination of a small number k
of nearby representatives, called the representative neighborhood,
b∗p, p ∈ δ (bx), k = |δ (bx)|:

bx ≈ ∑
p∈δ (bx)

wp b∗p, ∑
p∈δ (bx)

wp = 1, (5)

The neighborhood here is defined in terms of L2 distance in BRDF
space, not spatial distance. This ensures that the linear combination
produces a physically plausible result.

Representative Projection and Bootstrapping Substituting
(5) into (3), we obtain a constrained linear equation on the weights
wp:

rx = ∑
p∈δ (rx)

wp r∗p, ∑
p∈δ (rx)

wp = 1 (6)

where
r∗p = Rb∗p. (7)

The projection in (7) numerically applies the key lighting we cap-
tured in phase two to the representative BRDFs we captured in
phase one, and also evaluates at the key viewing direction o∗.
It reduces an Nb-dimensional representative vector, b∗p, to an N-
dimensional matching vector, r∗p. Equations (5) and (3) imply that



the measured key vector rx can be represented as a linear combina-
tion of neighboring matching vectors, r∗p, p ∈ δ (rx).

Because we do not know the entire BRDF vector bx but instead
only the key vector rx, we require that key vectors roughly preserve
distance so that a neighborhood in key vector space corresponds to
a similar neighborhood in the original BRDF space. This requires
a sufficient number of key measurements.

3.3 Manifold Bootstrapping Details

Estimating Local BRDF Dimensionality We choose k based
on an analysis of intrinsic local dimensionality of the representative
set. The basic idea is to assemble a growing set of neighbors in
terms of increasing distance around each representative, considered
as a local center. We analyze dimensionality based on a singular
value decomposition (SVD) of vector differences of all neighbors in
the set to this center. Eliminating singular values less than a thresh-
old (e.g. preserving 95% of total energy), the number of significant
singular values remaining forms an estimate of dimensionality. At
first, dimensionality increases rapidly, since each new neighbor typ-
ically adds an entire new dimension. But after we have discovered
a spanning set of neighbors, additional ones add no more signifi-
cant dimensions to the space. We use a simple heuristic that fixes
dimensionality when twice as many neighbors fails to increase the
dimensionality estimate. We then average local dimensionality es-
timates over a random selection of representative centers.

Uniform Measurement Scaling Overlapping light sources and
varying environmental lighting in key measurement produce a non-
orthogonal key measurement matrix. This leads to ellipsoidal rather
than spherical neighborhoods in key space, and so complicates the
selection of neighbors and distorts the interpolation. We orthogo-
nalize the projection by applying the SVD to R, yielding

R = UR ΛR VR (8)

where UR is an N×N orthogonal matrix of left-hand eigenvectors,
ΛR is an N×N diagonal matrix of eigenvalues, and VR is an N×
Nb (really N ×Ni) orthogonal matrix of transposes of right-hand
eigenvectors. ΛR should contain no zero or very small elements; if
it does, then we are measuring redundant (i.e., linearly dependent)
lighting configurations, which add no new information to the key.

To remove non-uniform scaling in our key measurements, we
apply the SVD in (8) to obtain the uniform key vector

r̂x = Λ−1
R UT

R rx. (9)

We also define the uniform matching vector r̂∗p as

r̂∗p = VR b∗p. (10)

Neighbors can now be found in the uniform key space using a sim-
ple distance threshold over these N-dimensional vectors, in order to
match a linear combination of the r̂∗p to each r̂x.

Neighborhood Selection After uniform measurement scaling,
the representative neighborhood δ is determined at each spatial po-
sition x by finding the k-nearest uniform matching vectors r̂∗p to
the uniform key r̂x. We use approximated nearest neighbor (ANN)
search [Mount and Arya 1997] to accelerate finding the k-nearest
neighbors. We also remove outliers having distance more than 5
times of the average distance over all neighborhoods.

Local Linear Combination We then determine the linear
weights, wp, based on the distance metric in each local neighbor-
hood [Roweis and Saul 2000], via:

wp = ∑
q∈δ (rx)

C−1
pq (r̂x · r̂∗q +λ ), (11)

λ =
1−∑p,q∈δ (rx) C−1

pq (r̂x · r̂∗q)
∑p,q∈δ (rx) C−1

pq
. (12)

Cpq = r̂∗p · r̂∗q denotes the covariance matrix of the neighborhood
and C−1 is its inverse. We compute the inverse based on SVD,
and clamp reciprocals of small singular values back to 0. Though
negative weight solution are theoretically possible, in practice, we
don’t see negative weights.

3.4 Synthetic Enlargement for Representatives

To handle bumpy surfaces, we enlarge the representative set by ro-
tating each BRDF to align the vertical direction to a discrete set of
tilted normals. The set is regularly sampled using 120 azimuthal
angles and 30 polar angles in a 75◦ range, yielding an enlargement
factor of 3600. The same bootstrapping algorithm is then applied
to capture spatially-varying bumpy reflectance. After enlargement,
nearly identical representatives are removed using distance culling
as described in Section 3.1.

For anisotropic materials, we similarly rotate the derived BRDF
around the normal direction by a discrete set of 360 azimuthal an-
gles and add the corresponding BRDFs to the example set. We can
then recover the anisotropic reflectance and local orientation angle
at each spatial position.

Given a 3× 3 rotation matrix R, the rotated BRDF b′(i,o) is
given by

b′(i,o) = b(RT i, RT o). (13)

To handle tilts due to normal variation, representative BRDFs are
defined on the full spherical domain, not just the upper hemisphere.
The lower hemisphere of the original BRDF b is zeroed out be-
fore rotation. In our implementation, since our phase one capture
relies on the microfacet model, we can simply rotate the NDF’s
half-angle vector h, and then convert the NDF to a full 4D BRDF
(see Section 4.1).

3.5 Key Measurement Validation

Key measurements must adequately discriminate BRDF features in
two ways. First, they should ensure that representative neighbor-
hoods in “key” space, δ (rx), also correspond to neighborhoods in
BRDF space, δ (bx), so that distant BDRFs are not interpolated.
Second, they should ensure that local distances in the BRDF man-
ifold are preserved, to yield an accurate local reconstruction. This
motivates an investigation of how well key measurements preserve
distance in the original BRDF manifold, at both small and large
length scales.

Overall distance preservation τ over a neighborhood of represen-
tatives of radius r, δ (p,r) = {q | ||b∗p−b∗q|| < r} can be measured
by:

τ(p,r) =
∑i, j∈δ (p,r) ‖r̂∗i − r̂∗j‖
∑i, j∈δ (p,r) ‖b∗i −b∗j‖

. (14)

In the uniformly-scaled space, we have 0≤ ‖r̂∗i − r̂∗j‖ ≤ ‖b∗i −b∗j‖.
The closer τ is to 1, the better our key measurement is at discrimi-
nating between representatives in the neighborhood. Based on this,
we examine average distance preservation at various length scales,
r via

τ̄(r) = 1/M
M

∑
p=1

τ (δ (p,r)) . (15)

Finally, we define global distance preservation,

τg = τ̄(∞) (16)

by calculating average distance over all pairs of representatives. We
also define local distance preservation

τl = τ̄(r̄ ) (17)

where r̄ is the average local radius over all representative BRDFs. It
is defined as the max distance over the k nearest neighbors to each
representative, averaged over all representatives.



Figure 3: Single point BRDF measurement device (phase 1): (a) optical
design, (b/c) prototype from side/bottom view.

4 SVBRDF Data Acquisition
Our approach captures two datasets from a flat sample of the tar-
get material. Typical sample dimensions are 10cm×10cm. Our
device setups are portable and handle natural background lighting
and inexact lighting control, allowing materials to be captured on-
site without the need to move them to a dedicated capture room.

4.1 Acquiring Representatives: BRDF Samples

We have developed a portable device for capturing a hemispherical
field of reflected rays emanating from a single point on the material
sample using a single camera position. Data is acquired by illumi-
nating the surface point using nl = 6 lighting directions and captur-
ing its resulting reflectance. A high-resolution general microfacet
BRDF [Ashikhmin et al. 2000] is derived from this captured data.
We scan the sample to acquire about typically hundreds of BRDFs
scattered over its surface.

Device Setup Figure 3 shows the design of our single-point
BRDF measurement device. Our setup includes a pair of Anchor
Optics 47mm condenser lenses with 21mm focus length, a 200µm
pinhole and a Firefly(R) MV camera from Point Grey Research.
These components are mounted along the same optical axis using a
lens tube from Thorlabs. We use six high-brightness LEDs as light
sources; each is attached to a carbon fiber tube to generate a light
beam. One (top light beam) is mounted between the two condenser
lenses and illuminates the capturing point at roughly a 10 degree
bias from the vertical direction. The other five (side light beams)
are mounted around the optical axis between the field condenser
lens and the target surface, and illuminate the capturing point at 20
degrees above the horizontal plane.

A sample is placed at the focal plane of the field condenser lens,
fF. The pinhole is placed at the focal plane of the ocular condenser
lens, fO, and images the light field at a single point on the target
surface onto a video camera. The acceptance angle of the condenser
lens is 48◦ from the optical axis. The camera communicates with
a laptop via an IEEE1394 cable, which also supplies power for the
LEDs and their control unit. A housing ensures the device is at the
correct distance from the target sample.

Calibration The lens tube ensures optic alignment of the lenses,
pinhole and camera. Distances between them are manually ad-
justed. The LED for the top light beam is held by an acrylic disc; its
position is calibrated by measuring a mirror. Positions of the side
LEDs are calibrated in manufacture. We calibrate the color and in-
tensity of each LED by measuring a color checker pattern. Radial
distortion of the dual condenser system is analytically calculated
based on the specification from Anchor Optics, and determines the
view direction at each pixel in the captured image.

Capturing The device is a cylinder 50mm in diameter and
150mm tall, and weighs around 500g. We scan it over the sample to
collect BRDFs at different locations. For each position, we acquire
six images lit by each LED and two images per light for exposure
bracketing. The camera captures images of resolution 320×240 at
135Hz, yielding around 0.1s per BRDF point capture. In a postpro-
cess, each exposure pair is merged into an HDR image [Debevec

Figure 4: NDF reconstruction: (a) 2D BRDF slice captured using top light
beam, (b) using side light beam, (c) reconstructed NDF, (d) covered region
in the reconstructed NDF. BRDF slices from these six lighting directions
cover most of the NDF domain.

and Malik 1997], and the resulting 6 images of 240×240 used to
derive a high-resolution BRDF. Figure 4a shows an example.

The top light LED component occludes a 3mm diameter hole
in the captured image. Since the top light beam is biased from
the optic axis, this hole typically does not occlude the peak of the
specular lobe. We obtain the occlusion mask when calibrating with
the color checker. If the hole contains no high frequency features,
we fill it with harmonic interpolation [Schuster 2001]. We detect
this by querying the intensity range of pixels surrounding the hole
and testing whether the max/min ratio exceeds 2. In that case, we
discard the sample.

Reflectance samples are then computed from the six HDR im-
ages by dividing by the cosine factor and light intensity

ρ (o(u), il) =
Gl(u)

(n · il)Ll
(18)

where u is the pixel position in the image corresponding to the view
direction o(u), and il and Ll are the direction and intensity of the
l-th LED. These quantities are all determined in calibration.

In sustained mode, we move the device continuously but slowly
(e.g. around 1mm/s) over materials with smooth spatial variation.
For materials with piecewise reflectance discontinuities or small de-
tails, the device also runs in a triggering mode. Placing the device
on the desired target location, the user triggers a single BRDF point
capture using a UI on the computer connected to the device.

Reconstruction To reconstruct a high-resolution 4D BRDF
from this captured data, we decompose the BRDF into diffuse and
specular components. The diffuse component ρd is determined by
using a simple minimum filter on the samples ρ in (18), via

ρd = ∑l minu {ρ(o(u), il)}
nl

. (19)

The specular component is the residual after subtracting this diffuse
term:

ρs (o(u), il) = ρ (o(u), il)−ρd . (20)

We then represent the specular component with a general micro-
facet model [Ashikhmin et al. 2000] as

ρs(o, i) = cs
D(h)S(i)S(o)F(o, i)

π (i ·n)(o ·n)
, (21)

This model is defined in terms of five factors: a microfacet normal
distribution function (NDF) D in terms of the half-angle vector from
(1), its shadowing factor S, a Fresnel reflection factor F , and the
scalar specular coefficient, cs. We assume the surface normal is
aligned to the z axis: n = z = (0,0,1). Since D dominates the other
factors in determining the high-frequency characteristics of BRDF,
we follow [Ashikhmin et al. 2000; Debevec et al. 2000; Wang
et al. 2008] and tabulate it as a square image using the spherical
parameterization in [Shirley and Chiu 1997]. We fit this microfacet
BRDF in (21) from the measured specular data ρs in (20) using
the method described in [Ngan et al. 2005]. In our case, the view
direction varies densely rather than the lighting direction. Therefore
we reconstruct the full NDF from partial NDFs inferred using a



Figure 5: Device setup for capturing reflectance maps (phase 2): (a) dia-
gram, (b) photograph.

sparse set of nl lighting directions. We represent the recovered NDF
by a 400×400 square image using the spherical parameterization
in [Shirley and Chiu 1997]. Figure 4 summarizes the process and
shows an example.

4.2 Acquiring Keys: Reflectance Maps

Keys are based on reflectance maps captured from a single view
and lit by N different lighting configurations (Figure 5). The light-
ing can include variable environmental/area sources and their inter-
reflection off surrounding geometry, as shown in Figure 6. The light
source is attached to a hand-held pole and moved in a 2D plane op-
posite the sample from the camera, about 1.5m away from the sam-
ple center. We attempt to uniformly sample this plane, and ensure
that the set of reflected directions are “covered” by a light direc-
tion (i.e., make a highlight appear on the sample). Precise lighting
control is not necessary.

A mirror ball is used to probe the lighting applied. A Canon 30D
camera with EF-100 2.8 lens is placed above and 2.0m away from
the center of the material sample. Image resolution is 3504×2336.

Before capturing, we calibrate the camera’s position and orien-
tation using the method in [Zhang 2000]. For each lighting change,
we record an HDR image including the material and the mirror ball
using exposure bracketing as in [Debevec and Malik 1997]. In our
prototype system, we simply move the light source around the sam-
ple by hand.

The process is finished after capturing N images, resulting in the
material’s reflectance responses, r j(x), and reconstructed source ra-
diance fields, L j(i), for j ∈ 1,2, . . . ,N. The environmental lighting
and moving area light source is far enough away to reasonably as-
sume that the radiance field is constant over the entire material sam-
ple. We also compute the viewing direction o? at the sample center
and assume it is constant over all x as well.

Key Lighting Dimensionality To investigate the sufficiency of
key lighting measurements, we captured 100 lighting conditions
based on a small varying area light source, and randomly selected
N as input to generate the matching vector space of 1200 BRDFs,
sampled from the example in Figure 11b. Results are averaged over
10 trials of this random lighting selection. Figure 7a plots distance
preservation as a function of N. Global and local distance preser-
vation converge fairly quickly as N increases. In our experiments,
convincing results are obtained with τg > 0.9 and τl > 0.85. Eval-
uating τl and τg at a few hundred representatives takes little time
and indicates whether our lighting configuration and value for N
are sufficient. So this validation can be applied between phase one
and before phase two, to guide the key measurement.

Figure 6: Lighting used for key measurement, L j , visualized as hemicube
maps.

Figure 7: Distance preservation from representative space to matching vec-
tor space. (a) with increasing number of key measurements. (b) with in-
creasing size of light source. Light radius is a linear angle, measured in
radians. The materials used in this experiement is glossy ppaer, shown in
Figure 11b. The distance preservations are computed from equations 16 and
17

Material Sample
Reflectance Maps Representative BRDFs

Resolution # (N) # (M) τg/τl k
glossy paper (fig.11b) 1000×1000 50 30 0.90/0.87 10
wrinkle paper (fig.1c) 1000×600 200 30 † 0.90/0.83 13
weathered copper (fig.1d) 2000×2000 80 1200 0.93/0.85 21
aluminum pan (fig.1a) 2000×2000 200 10 § 0.99/0.85 15
satin (fig.1b) 2000×2000 90 30 0.99/0.85 15
wrinkled satin (fig.14) 1500×1500 200 30 †§ 0.91/0.85 19

Table 1: Statistics for our examples. The M column shows number of rep-
resentatives before enlargement. Materials using synthetic enlargement are
marked with † for normal and § for tangent enlargement.

Key Lighting Size In addition to the number of measurements,
the size of the light source used also affects the sufficiency of our
key measurement. To investigate this parameter, we performed
an experiment on the material shown in Figure 11b, which mixes
BRDFs of different specularity and color. We synthetically gener-
ated a series of matching vectors with a moving disk-shaped light
source of varying radius. We then plot local and global distance
preservation as a function of light source size. The result is shown
in Figure 7b. Smaller light sources generate a higher-rank projec-
tion VR from (10). However, their corresponding key space is also
sparsely supported, so significant variation in BRDF manifold can
fall into its null space. Light sources of medium extent (e.g. 0.4π)
provide the optimal balance between subspace dimensionality and
wideness of support, and so best preserve distance.

5 Experimental Results
We implemented our SVBRDF bootstrapping algorithm on a In-
tel Core(TM)2 Duo 2.13G PC with 2G memory. Core capturing for
BRDF representatives and reflectance map keys takes 10-20 min-
utes, excluding time for setting up the material target, camera, and
light source. Subsequent data processing takes less than 10 min-
utes. Table 1 lists the parameters used in capturing. We infer 2D
NDFs of resolution 400×400, yielding 4D BRDFs with more than
ten million angular samples in viewing and lighting direction. The
spatial resolution ranges from one to four million samples.

5.1 Method Validation

Test on Fully-Sampled SVBRDF We tested our bootstrap-
ping method on fully sampled anisotropic SVBRDF data (greet-
ing card from [Lawrence et al. 2006]). The experiment selected
1000 BRDFs from random positions as the representatives. Re-
flectance map capture was simulated by applying the Grace Cathe-
dral environment map [Debevec and Malik 1997] along with a disk
light source with angular radius 0.4π at a controlled direction. We
then measured reconstruction error of our bootstrapping method as
a function of the number N of different key measurements (light di-
rections). For each N, we average over 10 randomly generated sets
of light directions. Figure 8a shows average reconstruction error,
which falls quickly as N increases. The right two columns of the



Figure 8: Validation example. (a) Reconstruction error as a function of
number of lighting measurements, N. (b) Rendering with original SVBRDF.
(c) Rendering with reconstructed SVBRDF.

figure compare rendered results between the original data (b) and
our reconstructed SVBRDF (c), at a view not used in the second
phase capture. An accurate match is obtained.

Comparison with Microfacet Synthesis We compared our
method with microfacet synthesis [Wang et al. 2008]. Results are
shown in Figure 9. We made N=20×20 lighting measurements for
microfacet synthesis, as suggested in [Wang et al. 2008], requir-
ing capture of 400 reflectance images. Our method was based on
N=50 key measurements. Both methods applied point source light-
ing. Even with such a large data set, microfacet synthesis generates
results with grid artifacts on highly specular texels. The artifacts
are caused by point light source sampling, which aliases specular
peaks. By reconstructing based on full-resolution BRDFs acquired
in a separate step, our method is able to avoid such artifacts with a
greatly reduced measurement.

Effect of Neighborhood Size We also investigated how k af-
fects reconstruction quality. Our experiment is based on the brushed
aluminum sample with N=100 key measurements. We used repre-
sentative set enlargement based on tangent rotation as described in
Section 3.4. Using a total of M=3600 representatives, we compared
reconstruction error from local linear combination as k varied from
1 to 3600. Results at a typical texel (marked with a red circle) are
shown in Figure 10a. The ground truth BRDF is acquired at that
point by the device described in Section 4.1. As expected, increas-
ing k always reduces the fitting error between the key vector and
the linear combination of matching vectors. When k = N, the num-
ber of parameters matches the number of constraints and the error
drops to 0. This does not imply a corresponding reduction in er-
ror for the final BRDF, because reconstruction is based on a sparse
key measurement and so becomes extremely under-determined. As
discussed, the BRDF manifold is not globally linear so such under-
determined linear combinations generate results off the BRDF man-
ifold and provide a poor fit. Very large k thus generate an implausi-
ble BRDF with ghosting artifacts and high error, as shown in Figure
10ef. Over a broad range (4-60), the choice of k has little effect on
reconstruction quality.

5.2 SVBRDF Capture Results

Figure 11 shows results for different material samples. We compare
the rendered result of our reconstructed SVBRDFs to photographs
of the captured sample with the same lighting conditions. Mate-
rials with smooth (a/d) and sharp (b/e) spatial variation are both
handled. The left two columns show isotropic materials, while the
rightmost shows anisotropic satin. The comparsion is made under

Figure 9: Comparison with result by microfacet synthesis [Wang et al.
2008]. (a) ground truth. (b) our result. (c) result of microfacet synthesis

Figure 10: Local linear reconstruction with different neighborhood sizes, k.
Error is measured by sum of squared differences (squared L2), normalized
to the signal’s sum of squares. BRDFs are visualized as 2D NDFs inferred
from the microfacet model. (a) Matching vector and final BRDF recon-
struction error vs. k. (b) BRDF ground truth. (c-f) reconstructed BRDF
with different k, as marked in (a).

a novel view and light which does not correspond to any view or
light conditions used in capture.

Figure 12 shows results for a bumpy isotropic material (b), an
anisotropic material with spatially varying tangent (a), and a ma-
terial with both both spatially-varying normals and tangents (c).
Rendering results with reconstructed SVBRDFs match well with
the ground truth, as shown in the second row. The number of rep-
resentatives before enlargement is listed in Table 1. The wrinkled
satin example enlarges based on both normal and tangent rotation;
we reduced its enlargement factors to 72× for tangent and 400×
for normal rotations, yielding 864k total representatives after en-
largement. All other examples use 3600× for normal and 360× for
tangent enlargement, as mentioned in Section 3.4. The figure also
shows normal/tangent maps inferred by applying the same linear
combination used to reconstruct each SVBRDF texel to the repre-
sentative normal/tangent vectors themselves. Such vectors provide
a good, low-dimensional proxy to visualize our method’s output.

Figure 1 and 13 show rendered results of the acquired SVBRDFs
mapped on objects, from two different views. A brushed aluminum
pan is shown in (a); the fan-shaped highlight and detailed brush-
ing pattern create a realistic appearance. A satin pillow with com-
plex needlework is rendered with environment lighting in (b), and
exhibits complex appearance changes as the view and light varies.
Wrinkled glossy paper with sharp reflectance changes is rendered in
(c). Progressively changing reflectance captured from a weathered
copper plate is shown in (d). Figure 14 shows rendered results from
the wrinkled satin SVBRDF capture. Refer to the accompanying

Figure 11: SVBRDF examples. Top row shows an original image of the
example; bottom row shows the reconstructed SVBRDF rendered with the
same lighting condition. Examples: (a/d) weathered copper plate, (b/e)
glossy paper, (c/f) satin.



Figure 12: Enlarged SVBRDF examples. Top row shows an original image
of the example, second row shows reconstructed SVBRDF rendered with
the same lighting condition. Third and fourth rows show inferred normal
and tangent maps. Examples: (a/d) brushed aluminum pan, (b/e) wrinkled
glossy paper, (c/f) wrinkled satin. Image (g) shows the tangent map of (a);
(h) shows the normal map of (b); (i/j) shows the normal/tangent map of (c).

video for further results of captured SVBRDFs.

6 Conclusion

Manifold bootstrapping simplifies and accelerates the capture of
complex reflectance by decomposing data acquisition into two
phases. One captures the overall BRDF manifold while the other
maps this manifold over the surface. Both phases make only sparse
measurements of the overall 6D SVBRDF. We propose a new com-
pact device based on a pair of condenser lenses to scan BRDF point
samples in the first phase. Using local linear embedding and rep-
resentative set enlargement, we produce SVBRDFs of high res-
olution in both the spatial and angular domains from this sparse
data. Captured materials exhibit convincing realism, isotropic and
anisotropic specularity, and spatial detail.

Our method is general and may have application to other sorts
of data capture, whenever representatives form a low-dimensional
manifold in a high-dimensional space. It can also accommodate
different methods for phase one and phase two measurement. Our
hand-held BRDF scanner measures only a few light directions, and
so requires amplification via the (single-bounce) microfacet model.
Though this model has wide applicability [Ashikhmin et al. 2000;
Wang et al. 2008], it does prohibit anomalous materials such as
retro-reflective ones. Our method for acquiring reflectance maps is
limited to flat surfaces without significant self-shadowing and self-
masking. We would like to address these drawbacks in future work.
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and P. Dutré, Eds., 253–264.


