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Figure 1: Appearance-from-Motion. Renderings under the “Uffizi Gallery” light probe of surface reflectance recovered under unknown
illumination. (a) “beer bottle”, (b) “coffee mug”, (c) “rusted copper”, and (d) “Starbucks can”.

Abstract

We present “appearance-from-motion”, a novel method for recover-
ing the spatially varying isotropic surface reflectance from a video
of a rotating subject, with known geometry, under unknown natural
illumination. We formulate the appearance recovery as an itera-
tive process that alternates between estimating surface reflectance
and estimating incident lighting. We characterize the surface re-
flectance by a data-driven microfacet model, and recover the mi-
crofacet normal distribution for each surface point separately from
temporal changes in the observed radiance. To regularize the recov-
ery of the incident lighting, we rely on the observation that natural
lighting is sparse in the gradient domain. Furthermore, we exploit
the sparsity of strong edges in the incident lighting to improve the
robustness of the surface reflectance estimation. We demonstrate
robust recovery of spatially varying isotropic reflectance from cap-
tured video as well as an internet video sequence for a wide variety
of materials and natural lighting conditions.
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1 Introduction

Accurately reproducing the rich and varied appearance of real-
world materials is critical for photo-realistic rendering. Some
of the most successful appearance modeling techniques today are
measurement-based, where observations of a material’s appearance
are used to drive or fit a digital appearance model suitable for photo-
realistic rendering applications. Despite recent advances in making
acquisition techniques and acquisition devices more accurate, more
robust, and more easily accessible, capturing high-quality surface
reflectance in general environments remains a challenging task.

The surface reflectance of an opaque object is formally described
by the spatially varying bidirectional reflectance distribution func-
tion (svBRDF) that relates the incident irradiance to outgoing radi-
ance at every surface point. The appearance at each surface point
is the inner product between its BRDF and the incident lighting at
that point. Many existing appearance modeling methods probe the
svBRDF by carefully controlling the incident lighting (e.g., mov-
ing a point light or directional light source [Holroyd et al. 2010;
Lensch et al. 2003], sweeping a linear light source [Gardner et al.
2003], or using environmental structured illumination [Aittala et al.
2013; Tunwattanapong et al. 2013; Wang et al. 2011]). Unfortu-
nately, the use of active illumination also implies full control over
the incident lighting, thus binding these methods to laboratory-like
settings. Recently, researchers have started to take appearance ac-
quisition outside the lab and under uncontrolled lighting. These
methods typically require a calibration object in the scene to in-
fer the lighting or material properties [Hertzmann and Seitz 2003;
Ren et al. 2011], or are limited to Lambertian [Shan et al. 2013] or
homogeneous objects [Romeiro and Zickler 2010] only.

In this paper we introduce “appearance-from-motion”, a novel
method for recovering the spatially varying isotropic surface re-
flectance under unknown natural illumination from a video se-
quence, and registered geometry, of a rotating object. We model
the surface reflectance by a data-driven microfacet model with a
1D isotropic microfacet distribution, and formulate appearance re-
covery as an iterative estimation procedure that alternates between
estimating surface reflectance and estimating incident lighting. We
solve for the surface reflectance on temporal gradients of the obser-
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vations of each surface point. Surface reflectance recovery in the
temporal gradient domain has the advantage that the influence of
diffuse surface reflectance is mostly mitigated, allowing us to re-
solve the microfacet normal distribution in isolation from diffuse
lighting effects. A key observation is that natural incident light-
ing is sparse in the (angular) gradient domain, with few dominant
edges (e.g., at the skyline, around windows or light sources, etc.).
By directing the computations toward the effects of these salient
edges, we can regularize the otherwise ill-conditioned recovery of
the surface reflectance. In addition, we also rely on the sparsity of
the incident illumination gradients to break the inherent ambiguity
in the joint recovery of lighting and reflectance (i.e., a mirror-like
material under blurred lighting is indistinguishable from a rough
specular material under appropriate high frequency lighting).

The proposed appearance-from-motion framework greatly simpli-
fies acquisition, making data-driven appearance modeling more ac-
cessible to non-expert users. Acquisition is as simple as captur-
ing a video while rotating the object, either by using a turntable or
simply by hand. Our free-form acquisition is perfectly suited for
in-situ acquisition and is not bound by laboratory-like conditions.
We demonstrate the effectiveness of our method on several captured
datasets and illustrate the robustness of our method by recovering
surface reflectance from an internet video sequence.

2 Related Work

There exists a rich body of prior work on appearance acquisition.
The majority of these rely on active illumination to probe the sur-
face reflectance of a subject (e.g., [Aittala et al. 2013; Holroyd et al.
2010; Gardner et al. 2003; Tunwattanapong et al. 2013]). While
accurate and robust, active illumination methods are limited to ac-
quisition environments with full control over the incident lighting.
Passive appearance acquisition methods, on the other hand, infer
surface reflectance from the unknown lighting present during acqui-
sition. We focus this overview of related work on passive appear-
ance acquisition methods – a comprehensive survey on active ap-
pearance modeling techniques can be found in [Dorsey et al. 2008].

The first class of passive appearance recovery methods place one
or more reference samples with known BRDF in the scene. Hertz-
mann and Seitz [2003] recover surface normals and reflectance by
capturing multiple homogeneous reference objects, and model the
surface reflectance at each surface point on the target subject as a
linear combination of the reference materials. Treuille et al. [2004]
extend this method to multi-view data. Recently, Ren et al. [2011]
employed a BRDF checker card of 24 reference materials to record
the light response for a handheld linear light source waved over the
subject, and reconstruct the BRDF at each surface point as a linear
combination of the 24 reference materials. A disadvantage shared
by these methods is that a reference sample needs to be placed in
the scene. Furthermore, the recovered surface reflectance is lim-
ited to the appearance subspace spanned by the reference materials.
In contrast, our appearance-from-motion method does not require
a reference sample, and it employs a more flexible data-driven re-
flectance model.

A second class of passive appearance modeling techniques employs
inverse rendering to jointly recover surface reflectance and light-
ing from a single/few viewpoint observations [Marschner 1998].
An extensive mathematical framework for inverse rendering based
on spherical harmonics was proposed by Ramamoorthi and Han-
rahan [2001]. Using this framework, they demonstrate accurate
recovery of lighting and surface reflectance from a small set of
views of a homogeneous object. Romeiro et al. [2008] introduce
passive reflectometry for inferring surface reflectance from a single
image of a homogeneous sphere with known natural incident light-

ing. Romeiro and Zickler [2010] further extend this framework to
handle unknown lighting. They do not explicitly reconstruct the
incident lighting, but instead rely on the statistics of real-world illu-
mination to constrain the recovery of the surface reflectance. Lom-
bardi and Nishino [2012] estimate both lighting and homogeneous
surface reflectance from an object with known shape. They model
the surface reflectance as a log-linear combination of data-driven
basis functions, and employ a heavy tail prior and low entropy prior
to constrain the recovery of the incident lighting. All of these meth-
ods exploit the rich variation in surface normals to infer homoge-
neous surface reflectance. An exception is the work by Barron and
Malik [2013] that infers shape, spatially varying reflectance and
lighting from a single photograph. However, the spatially varying
reflectance is restricted to diffuse reflectance with spatially varying
albedo only. In contrast, our method relies on a dense temporal
sampling to estimate both diffuse and specular isotropic spatially
varying surface reflectance.

A third class of passive methods infers spatially varying surface
reflectance from multi-view observations of a subject assuming
some underlying reflectance representation. Nishino et al. [2001]
model surface reflectance from a sparse set of views under static
unknown lighting using a diffuse texture and a homogeneous para-
metric specular component. Yu et al. [2006] use tensor factoriza-
tion to reconstruct the svBRDF and illumination from a sparse set
of images under static, unknown lighting. They model the incident
lighting using a low-frequency Spherical Harmonics representation,
and represent the svBRDF by a texture-modulated base material.
Li et al. [2013] recover geometry, reflectance, and lighting from
a human performance. They model surface reflectance by a per-
surface point diffuse albedo, and a per-region specular component
represented by the Phong BRDF. Haber et al. [2009] reconstruct
the appearance of a single object from internet photo collections.
They model incident lighting using an all-frequency wavelet rep-
resentation, and represent the BRDF as a linear combination of 10
basis materials. Shan et al. [2013] reconstruct a simplified model
(i.e., diffuse reflectance and uniform lighting with a single direc-
tional light source) to estimate the appearance of very large-scale
scenes from internet image collections. All these methods either ig-
nore specular surface reflectance, or assume a simplified model. In
contrast, the proposed method uses a flexible data-driven specular
surface reflectance model that can accurately model a wide range
of isotropic materials.

3 Assumptions

Recovering spatially surface reflectance under unknown incident
lighting is a difficult and ill-conditioned problem. A single ob-
servation of a surface point under unknown lighting provides in-
sufficient constraints to recover both the incident lighting as well
as detailed surface reflectance. Prior work on homogeneous re-
flectance recovery under unknown lighting exploits observations
from multiple surface points to reconstruct both the lighting and
surface reflectance. However, in the case of spatially varying sur-
face reflectance each surface can potentially consist of a different
material. To overcome this, we propose to reconstruct the surface
reflectance for each surface point separately from multiple observa-
tions from different viewpoints. In particular, we rotate the subject
under fixed but unknown lighting, and record a video sequence from
a fixed vantage point. Similarly to prior work, we make a number
of assumptions to make robust and practical recovery possible:

Geometry: We rely on the availability of registered geometry to
track the motion of surface points and record respective changes
in the observed reflectance for each surface point in the video se-
quence. While a seemingly restrictive requirement, it should be



noted that the majority of appearance acquisition methods (even
under controlled lighting) also assume known geometry or employ
a separate acquisition phase to recover the geometry (e.g., svBRDF
acquisition methods assume a planar surface; single view methods
require known normals; etc.).

Lighting: Similarly to the majority of prior work on reflectance
recovery, we assume incident lighting is distant (i.e., only has a
directional dependence), and is on average color-neutral (i.e., gray
world assumption). We ignore interreflections and self-occlusions,
and assume that direct lighting is the dominant factor. Finally, we
assume the lighting does not vary for the duration of the acquisition.

We store the incident lighting in the “cross” or “cube map” param-
eterization at a resolution of 6× 128× 128, and ensure that any
operation is correctly performed on the spherical domain (e.g., a
spherical blur would result in a “spatially-varying” kernel in the
“cross” parameterization).

Surface Reflectance: We assume that the surface reflectance is
isotropic, and that it can be accurately characterized by a microfacet
reflectance model. Formally, the surface reflectance at a point x
is described by the Bidirectional Reflectance Distribution Function
(BRDF) [Nicodemus et al. 1977], a 4D function that relates incident
irradiance to outgoing radiance. A commonly used approximation
to general surface reflectance is the dichromatic BRDF:

fr(ωi,ωo;x) =
ρd(x)

π
+ρs(x) fs(ωi,ωo;x), (1)

where ωi and ωo are the incident and outgoing directions respec-
tively, ρd and ρs are the total diffuse and specular reflectivity or
albedo, and fs is the specular surface reflectance. We model the
specular surface reflectance using the generalized (isotropic) mi-
crofacet model [Ashikhmin et al. 2000]:

fs(ωi,ωo;x) =
D(ωh;x)G(ωi,ωo;x)F(ωi,ωo)

4(ωi ·n(x))(ωo ·n(x))
, (2)

where D(ωh) is the microfacet normal distribution function (NDF)
of the halfway direction ωh, F(ωi,ωo) is the Fresnel reflectance
(we assume a fixed index of refraction of 1.3 for all materials), and
G(ωi,ωo) is the shadowing and masking term.

We store the NDF as a 1D tabulated function that monotonically
decreases with (ωh ·n) at a resolution of 32 samples uniformly dis-
tributed in [0,Λ] (where Λ is the size of the footprint of the NDF,
and Λ ≤ 0.5π), and linearly interpolate in between. We will adap-
tively choose Λ to maximize the sample rate without cutting off the
NDF. Furthermore, we follow Ashihkmin et al. [2000] and compute
the shadowing and masking term directly from the NDF as:

G(ωi,ωi;x) = G′(ωi,ωh;x)G′(ωo,ωh;x), (3)

with

G′(ω;x) =
(ω ·n(x))∫

(ωh ·ω)D(ωh;x)dωh
. (4)

While other surface reflectance representations are possible (e.g.,
analytic models or spherical harmonics based representations), the
proposed data-driven microfacet representation has several advan-
tages: it offers a fair degree of freedom, it exhibits a wide frequency
response, and it naturally enforces a physically plausible form with-
out overly constraining the results. However, this comes at the cost
of requiring a non-linear fitting procedure.

4 Appearance-from-Motion

The goal of our appearance-from-motion framework is to recover,
for every surface point x, the surface reflectance fr defined by dif-
fuse albedo ρd(x), specular albedo ρs(x), and NDF D(ωh;x), that
best match the observations I(ω ′o;x, t) (a video of an rotating object)
under unknown natural lighting E(ω ′i ):

argmin
{ρd ,ρs,D}x,E(ω ′i )

∑
t

∑
x
||I(ω ′o;x, t)−L(ω ′o;x, t)||2, (5)

where L(ω ′o;x, t) is the outgoing radiance at a surface point x at time
t:

L(ω ′o;x, t) =
∫

Ω

fr(ωi(x, t),ωo(x, t);x)E(ω ′i )(n(x, t) ·ω ′i )dω
′
i . (6)

We denote directions in the global coordinate frame by the prime
symbol, and (time-varying) directions in the local frame of a point
x defined by its surface normal n(x, t) at time t. Both are related via
a rotation defined by the surface normal: ω ′ = Rn(x,t)(ω(x, t)).

To recover the surface reflectance, we also need to recover the in-
cident lighting E(ω ′i ) in order to evaluate Equation (6). A funda-
mental ambiguity in the joint recovery of lighting and reflectance is
that (angular) sharpness in BRDF can be traded-off for blurriness
in the lighting while matching the observations. Our solution to
conquering this ambiguity is based on two key observations. First,
we note that our prime concern is to accurately recover the spatially
varying surface reflectance, and the recovery of the incident light-
ing is incidental. Second, we observe that natural incident lighting
is sparse in the gradient domain, and that the lighting has few dom-
inant discontinuities. The effects of such dominant discontinuities
in the incident lighting are easier to detect in the observations, and
thus provide a more stable cue to robustly recover the surface re-
flectance. We will therefore employ a sparse gradient prior in the
recovery of the lighting, effectively placing greater emphasis on the
recovery of dominant discontinuities, and focus the recovery of the
surface reflectance around these discontinuities.

The minimization in Equation (5) is non-convex in the unknowns.
To facilitate the computation of this minimization, we iteratively
alternate between estimating the normal distribution D(ωh;x) (Sec-
tion 4.1), diffuse and specular albedo ρd(x) and ρs(x) respectively
(Section 4.2), and the incident lighting E(ω ′i )) (Section 4.3) while
keeping the others fixed until convergence.

4.1 NDF Recovery

Given an estimate of the incident lighting, we can recover each sur-
face point’s BRDF separately by considering slices through the ob-
servations I(ω ′o;x, t) with constant surface location x: Tx(ω

′
o, t) =

I(ω ′o;x, t). Such a slice forms a 1D temporal trace that records the
temporal variation in the appearance of a surface point x, and thus
the effects of the incident lighting on a single BRDF. The recovery
of a surface point’s BRDF can now be formulated as:

argmin
ρd x,ρsx,Dx

∑
t
||Tx(ω

′
o, t)−Lx(ω

′
o; t)||2. (7)

Note, we use the subscript x to denote that the surface location is
fixed, and that the minimization in Equation (7) is performed for
each surface point separately.

The accuracy of the result from the minimization in Equation (7)
greatly depends on the accuracy of the provided incident lighting
and the signal-to-noise ratio of the observations. To improve the
robustness of the recovery of the surface reflectance, we focus on
matching changes in the appearance due to salient discontinuities in



the lighting. To achieve this goal, we reformulate the minimization
in Equation (7) in terms of the temporal gradient, and employ a
robust detection method to locate the discontinuities in the lighting.

Gradient Domain Recovery The temporal gradient of the 1D
trace can be expressed as:

∇tLx(ω
′
o; t) = ∇t

∫
Ω

fr(ωix(t),ωox(t))E(ω
′
i )(nx(t) ·ω ′i )dω

′
i ,

= ∇t

∫
Ω

ρdx
π

E(ω ′i )(nx(t) ·ω ′i )dω
′
i

+ ∇t

∫
Ω

ρsx fsx(ωix(t),ωox(t))E(ω
′
i )(nx(t) ·ω ′i )dω

′
i ,

=
ρdx
π

∫
Ω

E(ω ′i )∇t(nx(t) ·ω ′i )dω
′
i ,

+ ρsx

∫
Ω

∇t

(
fsx(ωi,ωox(t))E(Rnx(t)(ωi))ωiz

)
dωi.

(8)

In the last term, the incident lighting is expressed in the local frame
at surface point x. Observe that while the incident lighting E(ω ′i )
expressed in the global frame is temporally invariant, the incident
lighting E(Rn(x,t)(ωi)) expressed in the local frame is not.

We further simplify this expression by observing that the gradient of
the diffuse component is approximately zero (∇t(nx(t)) ·ω ′i ) ≈ 0),
when the time granularity is small compared to the rotation. Thus
the effects of the diffuse component on the temporal gradient are
negligible. Similarly, for small time-steps, changes in ωo are negli-
gible; a surface point generally moves less than a pixel per frame.
Hence, the effects of fs(ωi,ωo) on the gradient are approximately
constant (i.e., the gradient of the lighting is the dominant factor):

∇tLx(ω
′
o; t)≈ ρs(x)

∫
Ω

fs(ωi,ωox(t))ωiz∇tE(Rnx(t)(ωi))dωi. (9)

Following these approximations, we can then directly recover the
shape of the NDF from the temporal gradient of the 1D trace and
from the temporal gradient of the incident lighting expressed in the
local coordinate frame:

argmin
Dx

∑
t
||∇tTx(ω

′
o; t)−

∫
Ω

fsx(ωi,ωox(t))ωiz∇tE(Rnx(t)(ωi))dωi||2,

(10)
where Dx is the unnormalized NDF that includes the specular
albedo ρsx.

Robust Discontinuity Detection Given the gradient domain
minimization formulation (Equation (10)), we now want to further
regularize this minimization by only considering the dominant dis-
continuities in the incident lighting. Due to the bandwidth limiting
behavior of surface reflectance, the recovered incident lighting is
likely more blurry than the ground truth incident lighting. Conse-
quently, simply thresholding the temporal gradients of the estimated
incident lighting to extract the dominant discontinuities is unlikely
to provide robust and reliable results. Instead, we take inspiration
from motion deblurring and follow a strategy similar to that of Xu
and Jia [2010]. First we apply a spherical Gaussian blur (with a
kernel size of 0.01sr) to the incident lighting to remove any noise
and ringing artifacts in the estimated lighting. Next, we sharpen
the edges along local angular gradients (denoted by ∇ω E) using a
shock filter [Osher and Rudin 1990], resulting in an enhanced in-
cident lighting Es(ωi). The shock filter is computed by repeatedly
applying a morphological operator based on the sign of the Lapla-
cian ∆E:

Ei+1 = Ei− sign(∆Ei)||∇ω Ei||di, (11)

(a) Measurement (b) After shock filter (c) Selected edge (c) Ground truth lighting

Figure 2: Robust Detection of Dominant Discontinuities. Given
a possibly blurred estimate of the incident lighting (a), our method
applies a shock filter (b) to detect dominant edges (highlighted in
blue) (c) to aid in the recovery of surface reflectance. The detected
edges are similar to those found in the ground truth incident light-
ing (d).

until convergence (i.e., (Ei+1−Ei)/Ei < 0.01). Finally, we com-
pute the temporal gradient on Es(ωi) (by finite differencing) and
only keep dominant edges:

∇tE(ωi) =

{
∇tEs(ωi) r(ωi)> τr
0 otherwise, (12)

where r(ωi) is defined as:

r(ωi) =
||∑ω∈N (ωi) ∇tEs(ω)||

∑ω∈N (ωi) ||∇tEs(ωi)||+0.5
, (13)

and where N (ωi) is the footprint of the NDF Dx from the previous
iteration, i.e., a circle with radius Λ centered around ωi. τr is ini-
tially set to 0.1max(r(ωi)), and gradually decreased every iteration
by 10% [Cho and Lee 2009]. Figure 2 illustrates this process of
detecting dominant edges.

We can now solve Equation (10) using a non-negative least squares
minimization to ensure non-negative probabilities in the NDF. Fur-
thermore, we constrain the NDF to be monotonic to further regular-
ize the recovery. Finally, the NDF Dx can then be recovered from
Dx via normalization (i.e., unit integration).

4.2 Albedo Recovery

Given the incident lighting E(ω ′i ) and the recovered NDF Dx, we
would like to recover both the diffuse and specular albedo. For
this we express the 1D trace Tx(ω

′
o, t) as the weighted sum of a

normalized diffuse trace Tdx(ω
′
o, t) and normalized specular trace

Tsx(ω
′
o, t):

Tx(ω
′
o, t) =

∫
Ω

(
ρdx
π

+ρsx fs(ωi,ωo))E(ω ′i )(nx(t) ·ω ′i )dω
′
i ,

=
ρdx
π

∫
Ω

E(ω ′i )(nx(t) ·ω ′i )dω
′
i

+ ρsx

∫
Ω

fs(ωi,ωo)E(ω ′i )(nx(t) ·ω ′i )dω
′
i ,

= ρdxTdx(ω
′
o, t)+ρsxTsx(ω

′
o, t). (14)

Tdx(ω
′
o, t) and Tsx(ω

′
o, t) are fully determined by known compo-

nents. As a result, the recovery of the diffuse albedo ρdx and spec-
ular albedo ρsx can now be formulated as a robust non-negative
linear least squares minimization:

argmin
ρsx,ρd x

||Tx(ω
′
o, t)−

(
ρdxTdx(ω

′
o, t)+ρsxTsx(ω

′
o, t)
)
||2

s.t. ρdx,ρsx ≥ 0
(15)



(a) Measurement (b) Weight map

Figure 3: Confidence Weighting for the recovery of the incident
lighting based on the accuracy of the recovered BRDF and on the
bandpass behavior of the BRDF. (a) the observed reflectance from a
synthetic checkerboard svBRDF with specular blue tiles and diffuse
yellow tiles, illuminated by the Uffizi light probe. (b) the resulting
confidence weighting that places higher weight on regions that pro-
vide more information on the incident illumination.

4.3 Recovering Incident Lighting

As noted before, a key problem in the joint recovery of incident
lighting and surface reflectance is the fundamental ambiguity that
sharpness of the BRDF can be traded-off for blurriness in the in-
cident lighting and vise versa. We break this ambiguity, by ex-
ploiting the observation that natural incident lighting is sparse in
the gradient domain. Similar to Levin et al. [2007] we include a
||∇ω E(ω ′i )||0.8 sparsity prior to regularize the recovery of incident
lighting:

argmin
E(ω ′i )

∑
t

∑
x

w(x)||I(ω ′o;x, t)−L(ω ′o;x, t)||2 +λ ||∇ω E(ω ′i )||0.8,

(16)
where λ = 0.01, and the weighting function is the product of three
terms: w(x) = wc(x)wd(x)ws(x), where each terms encodes:

• Confidence in the Recovered BRDF at x. The stronger the
salient edges in the incident lighting over the path of the 1D
temporal traces, the more confidence we have in the recovery
of the BRDF. We estimate confidence by the total temporal
gradient across the (shock-filtered) incident lighting recovered
in the previous iteration: wc(x) = ∑t |∇tEs(ωi(x, t))|.

• Bandpass Behavior of the BRDF: All BRDFs act as a band-
pass filter over the incident lighting. To improve robustness,
we give lower weight to BRDFs that aggressively filter the in-
cident lighting: wd(x) = 1

σ
, where σ is the standard deviation

of the NDF.
• Specular Signal-to-Noise Ratio: A strong diffuse reflection

can mask the effects of the specular reflections, aversely af-
fecting the robustness of the estimate. We therefore give high
weight to surface points with a high relative specular albedo:
ws(x) =

ρs
ρs+ρd

.

Figure 3 illustrates how the weighting function w(x), for a synthetic
svBRDF with dark blue specular tiles and bright yellow diffuse tiles
on a spherical object, favors surface points that provide more reli-
able information on the incident illumination (i.e., a high weight
is assigned to the dark blue specular tiles, and conversely, a low
weight is given to the bright yellow diffuse tiles).

We solve Equation (16) using a coarse-to-fine dyadic multi-
resolution method, and apply at each scale a modified version of
the stochastic random walk algorithm of Gregson et al. [2013]. The
key differences are that our method uses a cost function over multi-
ple observations (i.e., video-frames) instead of the standard decon-
volution cost function over a single image, and that the recovered
incident lighting is a spherical function as opposed to an image.
While originally intended for image deconvolution, we found that

input : Observations I(ω ′o;x, t), estimated BRDF fr(ωi,ωo;x), geometry n(x, t),
number of iterations N = 100 and K = TotalPixelNumber, reset
probability Ξ = 0.0005, mutation strength σ = Λ/2 (Λ is the footprint
size of the NDF), minimum acceptance rate A = 0.4, lighting quantum
ψ = 0.05, quantum modifier γ = 0.5

output: Incident Lighting E(ω ′i )

1 initialization: E = I;
2 for k=1 to N do
3 α = 0;
4 ωc = random direction;
5 ∆εc = change in error (Eq. 16) if one adds (subtracts) ψ to E(ωc);

6 for j=1 to K do
// Random Walk

7 if (random() ≥ Ξ) then
8 mutate: ωm = sample normal (mean=ωc, std.dev.=σ );

9 else reset: ωm = random direction;
10 ;

11 ∆εm = change in error (Eq. 16) if one adds (subtracts) ψ to E(ωm);

12 if (∆εm improvement) then
13 α ← α +1/K;
14 permanently apply change to E(ωm) (add/subtract ψ)

// Move center if ωm is less worse than ωc,
otherwise random accept

15 if (∆εc ≤ 0 and ∆εm ≥ ∆εc) or (random()< ∆εm/∆εc) then
16 ∆εc = ∆εm;
17 ωc = ωm;

// Reduce ψ if acceptance rate is too low
18 if (α < A) then ψ ← ψ ∗ γ;
19 ;

Algorithm 1: Incident Lighting Recovery. Summary of param-
eters and the algorithm for recovering incident lighting. This
algorithm is further embedded in a coarse-to-fine dyadic multi-
resolution scheme.

stochastic deconvolution [Gregson et al. 2013] is especially well-
suited for our problem as it tends to focus on areas of high gradient.
Algorithm 1 lists the relevant parameters and summarizes the re-
covery algorithm of incident lighting at a single scale.

We further improve performance by removing the effects of diffuse
reflectance (computed and up-scaled from the prior scale) from the
observations, as the diffuse reflectance contributes little to the re-
covery of the incident lighting due to its low-pass behavior. We halt
the multi-resolution refinement when the bandwidth of the incident
lighting exceeds that of the BRDFs. Instead of using the bandwidth
of the recovered BRDFs directly, we use a cut-off frequency that
maintains 95% of the energy (in lower frequencies) of the NDFs to
minimize the impact of noise.

4.4 Initialization

Our reflectance recovery algorithm iteratively alternates between
solving for the NDFs (Section 4.1), diffuse and specular albedo
(Section 4.2), and for lighting (Section 4.3), while keeping the other
components fixed. To bootstrap this iterative process, we follow the
process outlined below:

NDF Dx Of the three aforementioned stages, estimation of the
NDF is most robust – thresholding on the shock filtered temporal
gradient is robust to some degree of blurring in the incident lighting.
Furthermore, the temporal trace Tx(ω

′
o, t) represents a 1D slice of

the blurred incident lighting (filtered by the BRDF). We therefore
propose to utilize the 1D trace directly as initial incident lighting
to recover the NDF. However, the trace only provides a 1D slice,
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Figure 4: Initialization. (a) we expand the temporal trace to cre-
ate a rough approximation of the incident lighting for each surface
point. (b) the specular surface albedos of all surface points are
brought to the same global scale based on the relative ratio of the
intersecting points of all pair-wise combinations of temporal traces.

whereas incident lighting is a 2D function. To circumvent this prob-
lem, we hallucinate a rough approximation of the incident lighting
by copying the closest point on the trace (i.e., an expansion of the
trace in a direction orthogonal to the trace direction; see Figure 4
(a)). Note that each surface point has its own trace, and hence we
create a different incident lighting approximation per surface point
for the initial step – subsequent iterations use a single incident light-
ing estimate for all surface points. Given this rough approximation,
we can then compute the NDF using the minimization in Equation
(10).

Initially we allow the NDF to cover the full range (i.e,, Λ = 0.5π).
In subsequent iterations, we speed up computations by limiting the
range of the NDF to contain 95% of the energy of the initial es-
timated NDF. We assume the values outside this range are due to
negligible noise, and set the NDF to zero outside this range.

Shadowing & Masking We initialize the shadowing and masking
term G(ωi,ωo) to 1, and update it after each computation of a new
NDF (Equations (3) and (4)). Consequently, the shadowing and
masking term is based on the previous iteration’s NDF. However,
this is still a good approximation due to the low frequency nature
of the shadowing and masking term.

Specular Albedo ρs While using the 1D trace directly as a rough
approximation of the incident lighting suffices to recover an initial
NDF, it does not help in the estimation of the specular albedo. The
gradient of the shock-filtered 1D trace is proportional to the ground
truth gradient times the specular albedo. Hence, naively applying
Equation (15) will always produce a specular albedo ≈ 1 (since the
specular albedo is present in both the trace and the approximation of
incident lighting). However, we observe that for 1D traces that in-
tersect, we can compute their relative ratio, and thus the relative ra-
tio of their respective specular albedos (Figure 4 (b)). By perform-
ing a global optimization on all pairs, we can determine the relative
specular albedos up to a global scale factor. This global scale factor
is an inherent ambiguity shared by all methods that jointly recover
BRDFs and lighting. We keep this global scale factor consistent
over the iterations by normalizing the incident lighting for each it-
eration – without observations of a known reference material, we
cannot resolve for this global scale exactly.

Diffuse Albedo ρd We initialize the diffuse albedo to zero. Con-
sequently, when recovering the incident lighting (Section 4.3), the
diffuse component gets baked into the lighting such that the spec-
ular reflection mimics the diffuse and specular reflection under the
real incident lighting. We therefore add a correction step after the
first iteration that subtracts the maximal diffuse reflectance from the

(a) Office Window (b) Outdoor (c) Office Lighting

Figure 5: Incident Lighting. The three lighting conditions un-
der which (a) the “beer bottle” (Office Window), (b) the “coffee
mug” (Outdoor), and (c) the “rusted copper” and “toy duck” (Of-
fice Lighting) were captured.

incident lighting:

E ′(ωi) = E(ωi)−
ρd
′

π

∫
E(ω)(ωi ·ω)dω, (17)

where ρd
′ is set such that minE ′(ωi) = 0. While this is likely an

overestimation, we found that the diffuse and specular albedo con-
verge to the ground truth after a few iterations.

5 Results

Acquisition & Calibration The proposed appearance-from-
motion method only requires a video sequence of a rotating target
subject, and registered geometry of the subject for each frame in the
video. Our method estimates the surface reflectance at every point
on the geometry separately; we make no assumptions on the under-
lying geometry or on the spatial distribution (e.g., smoothness) of
the surface reflectance or texture.

Unless noted, the results in this paper are computed from video se-
quences captured with a Canon EOS 5D Mark II equipped with an
EF 70-200 F4L lens. We directly use single-exposure radiomet-
rically linear RAW images, and calibrate the intrinsic camera pa-
rameters using the method of Zhang et al. [2000]. In addition, we
obtain the subject’s shape using an Artec 3D scanner, or by hand-
modeling it for very simple scenes. The subject is rotated using a
Directed Perception Pan-Tilt Unit-D46. Care was taken to ensure
that the surrounding environment was distant enough compared to
the relative size of the subject. We register the geometry using ICP
on manually marked correspondences for the first frame that are
then tracked to subsequent frames via Lucas-Kanade [1981] optical
flow using a Shi-Tomasi [1994] corner detector; we did not perform
any further fine-tuning to improve the registration. White balanc-
ing is performed directly on the recovered incident lighting based
on the gray world assumption, i.e., the average intensity among the
color channels should be equal.

Results We recover the surface reflectance for five objects ex-
hibiting a wide range of materials with rich spatially-varying de-
tails (e.g., “rusted copper”), sharp edges (e.g., the label on a “beer
bottle”), and with surface reflectance ranging from highly specular
(e.g., “coffee mug”) to near diffuse (e.g., center of the label on a
“beer bottle”). We record a input video sequence of these objects
under different types of illumination (shown in Figure 5) ranging
from an office setting with a bright window (e.g., used for the “beer
bottle” scene), artificial office lighting (used for the “copper” and
“duck” scenes) to outdoor environments (i.e., used for the “coffee
mug” scene).

Figures 1 and 17 show visualizations under novel incident lighting
of the recovered surface reflectance. Note that for the “coffee mug”
video sequence, the object was manually rotated without using a



A B

C D A B

C

D

Reconstructed NDF Material

Figure 6: Recovered NDFs. Four selected reconstructed NDFs
from the “rusted copper” sample. Note that our method can recon-
structed consistent results (a & b) and (c & d) for similar materials,
without explicitely enforcing spatial coherence.

rotation stage. Also note that the “Starbucks can” sequence was
obtained from YouTube1, where we assumed a gamma of 2.2 to ra-
diometrically compensate the video, and where we hand-modeled
the geometry as a cylinder. The number of required frames in the
videos varies depending on the object shape and illumination. A
necessary condition for a successful surface reflectance recovery is
that each pixel’s trace crosses a dominant edge in the lighting. For
the acquired video sequences, the number of frames ranged from
300 for the “beer bottle” to 500 for the “coffee mug” to 1000 for
the “rusted copper” example. The “Starbucks can” video sequence
contained 1200 frames. All example, except the “Starbucks can”
and the “rusted copper” examples, were rotated over two axes. The
“Starbucks can” was only rotated around one axis, and the “rusted
copper” was rotated over 4 axes. In addition, Figure 17 also shows
visualizations of the geometry, recovered reflectance components,
and recovered incident lighting for each of the example scenes.
Even though recovering incident lighting is not the main focus,
the resulting inferred lighting is still plausible; note that some of
the dark regions in the recovered lighting are never “seen” in the
reflections, and hence cannot be recovered. Reflectance recovery
took approximately 8 to 10 hours on a dual Intel Xeon E5-2690
processor with 64GB memory, where the majority of the compu-
tational effort was spent on the NDF recovery. We recovered the
reflectance properties for 1024×1024 surface points distributed in
the UV space of the input geometry. On average, 8% of the time
was spent on preprocessing the data, 70% on the NDF recovery,
12% on estimating the diffuse and specular albedo, and only 10%
was spent on recovering the incident lighting. Due to the various
non-linear steps (e.g., shock-filter), no theoretical guarantees ex-
ist on the convergence rate, or that the proposed optimization con-
verges to a global minimum. However, practically we found that
method produces good results, and we did not encounter vastly dif-
ferent convergences rates under different lighting conditions or for
different ranges of material properties.

Figure 6 shows four selected recovered NDF from the “rusted cop-
per” sample. As can be seen, our method can recover consistent
NDFs for surface points that exhibit similar reflectance without ex-
plicitely enforcing spatial coherence. Note that the estimated light-
ing is shared among all surface points, and hence implicitly acts
as a spatial coherence regularizer. In addition, we show in Fig-
ure 7 that the recovered surface reflectance is not over-fitted to the
incident lighting by rendering the results under different incident
illumination from the lighting present during capture. The “rusted
copper” and “toy duck” samples are visualized under natural il-
lumination from a window (while captured under office lighting),
the “coffee mug” was captured in outdoor lighting and is visual-
ized under indoor lighting, and the “beer bottle” is also lit by office
lighting (while captured under natural lighting from a window). As
can be seen, no discernable patterns related to the capture lighting

1http://www.youtube.com/watch?v=PYU1zgSjws0
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Figure 7: Visual Comparison under Novel Lighting. A compari-
son of visualizations of the recovered surface reflectance and a ref-
erence photograph under a similar lighting condition that differs
from the acquisition environment. The surface region for the “toy
duck” for which we reconstructed surface reflectance is marked in
the reference photograph.

(a) Captured under
window lighting

(b) Captured under
office lighting (c) Difference map

Error0% 10%

Figure 8: Repeatability under Different Acquisition Conditions.
Visualizations of the reconstructed surface reflectance of the “beer
bottle”, acquired from two separate sequence under (a) the “win-
dow lighting” and (b) the “office lighting”. A false color difference
image, normalized by the peak value, is shown in (c).

are revealed, indicating that no overfitting occurs. Note, that the
reference images are not a pixel-perfect match as it is difficult to
place the object in exactly the same location viewed from the same
viewpoint with the exact same camera. Furthermore, the handheld
“coffee mug” was computed from linearized H.264 video frames
(instead of RAW images to ensure a sufficient frame rate) which
introduces some additional minor color differences.

Figure 8 demonstrates the robustness and repeatability of the re-
flectance estimation under different acquisition conditions (i.e., dif-
ferent motion and lighting). We captured two separate sequences
of the “beer bottle” under the “window lighting” and “office light-
ing” conditions respectively, and rerendered the recovered surface
reflectance for both under the Uffizi Gallery environment.

6 Discussion

The previous results demonstrate the versatility and robustness of
our method on real-world scenes. While instructive, it only paints a
partial image due to the difficulty of obtaining accurate ground truth
surface reflectance and lighting. In this section we carefully vali-
date the impact of each of the four variables that influence the per-
formance of our method: lighting, material, geometry, and motion.
We perform this validation on simulated measurements of synthetic
and measured materials in order to study the impact of each variable
in isolation.

 http://www.youtube.com/watch?v=PYU1zgSjws0 
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Figure 9: Contrast of Lighting Discontinuities. A false color plot
of the reconstruction error on Gaussian NDFs with varying rough-
ness (0.04 to 0.12). A synthetic incident lighting condition was used
that contains a single step-edge with varying contrast. A contrast
level of 4 yields an error of less than 12%.

6.1 Impact of Lighting

Discontinuity We rely on strong discontinuities in the incident
lighting to robustly recover surface reflectance. A discontinuity can
be characterized by its contrast (i.e., the difference between the bot-
tom and the peak), and by its smoothness (i.e., rate of change).

Figure 9 shows a false color plot summarizing the impact of the
discontinuity contrast. We vary incident lighting contrast (of a syn-
thetic lighting environment that contains a single step-edge) and
surface reflectance roughness (of an Gaussian NDF) and compute
the reconstruction error. From this plot we can see that contrast is
the dominating factor, and that roughness only plays a minor role –
there is roughly a factor of two difference in contrast between rough
and sharp BRDFs for a similar error. A modest contrast ratio of 4
already yields an error of less than 12%.

The impact of the smoothness on the accuracy of the results de-
pends on the specific bandpass behavior of the surface reflectance.
A low frequency BRDF can be accurately recovered from a smooth
edge, whereas a high-frequency BRDF requires a sharp discontinu-
ity. Figure 10 shows the impact of smoothing the incident lighting
(Uffizi Gallery) on the “Wall Paper” svBRDF dataset [Dong et al.
2010] (mapped to a sphere). The difference images in Figure 10 and
other figures follow the same false color coding and scale as in Fig-
ure 9. Sharp specular reflections become blurred when recovered
from blurred incident lighting, and resulting error is approximately
proportional to the size of the applied blur. This is not unexpected,
and similar conclusions were made in prior work on inverse render-
ing [Ramamoorthi and Hanrahan 2001].

Consistency While the previous quantifies how the characteris-
tics of the lighting impact the error, it does not indicate how con-
sistent the method is under “good” incident lighting conditions. We
validate that recovering surface reflectance is consistent over dif-
ferent incident lighting conditions using two synthesized input se-
quences of a measured “Wall Paper” svBRDF dataset [Dong et al.
2010] under different lighting conditions, and visualized under a
third lighting condition. Figure 11 shows the resulting visualiza-
tions as well as the RMSE with a ground truth visualization. For
both cases, the recovered surface reflectance produces qualitatively
and quantitatively similar results.

6.2 Impact of Material

Accuracy To validate the accuracy on real-world materials,
we ran our method on the 100 materials from the MERL-MIT
dataset [Matusik et al. 2003] which spans a large section of the

(a) Reference (b) Light blurred by σ=0.04 (c) Light blurred by σ=0.08 (d) Light blurred by σ=0.12
E=0.132 E=0.216 E=0.353

Figure 10: Impact of Smoothness of the Incident Lighting. Re-
covered surface reflectance captured under incident lighting (Uffizi
Gallery) smoothed with a Gaussian kernel, and rerendered under
the St. Peter’s Basilica light probe. The frequency bandwidth of
the incident lighting is directly related to the maximal recoverable
bandwidth of the surface reflectance.

E=0.040E=0.021

(a) Reference (b) Uffizi Gallery as Input (c)  Grace Cathedral as Input

Figure 11: Robustness of Reflectance Recovery under Different
Lighting Conditions. Ground truth visualization lit by the St. Peter
light probe (a). Rerendering and respective error of the surface
reflectance recovered under the Uffizi Gallery light probe (b) and
under the Grace Cathedral light probe (c).

space of isotropic surface reflectance, and thus provides a good in-
sight on how our method performs on arbitrary physical materials.
We recovered surface reflectance for each material applied to ho-
mogeneous spheres under the Uffizi Gallery light probe, and com-
pared the error on visualizations under Grace Cathedral, St. Peter’s
Basilica, and the Eucalyptus Grove light probe. Figure 12 plots the
sorted average error on the per-surface point recovered surface re-
flectance. The errors range from 1% to 14%, with an average error
of approximately 7%. We also show visualizations of the ground
truth and the recovered surface reflectance for four selected materi-
als.

Note that homogeneous materials (as in Figure 12) represent a more
difficult case for our method than heterogeneous materials, because
the estimation of albedo and lighting becomes ambiguous – the dif-
fuse reflectance can be “baked into” the incident lighting (and have
an effective zero diffuse albedo) while producing the same observa-
tions2. Note, this is not true for the spatially varying case, where the
ratio between diffuse and specular albedo varies per-surface point.
We resolve this ambiguity by assuming that the minimum inten-
sity in the incident lighting is 0, and add a λreg||min(L(ωi))|| term,
with λreg = 0.01, to the recovery of the incident lighting. While
this assumption is unlikely to hold, and thus overestimate the dif-
fuse albedo, the overestimation is approximately proportional to the
ratio between min(L(ωi)) and

∫
L(ωi)dωi, and thus in practice the

degree of over-estimation is small.

Diffuse-only Our method relies mostly on specular reflectance
cues to estimate the incident lighting. The sharper the specular re-
flections, the better the estimate of the incident lighting, and thus
the more accurate we can detect salient edges. However, as shown

2This ignores the Fresnel and the geometry terms, a reasonable approxi-
mation since for many materials these do not sufficiently constrain the min-
imization to break the ambiguity.
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Figure 12: Accuracy Validation. A visualization of error in the recovered surface reflectance of homogeneous spheres captured under the
Uffizi Gallery light probe. A comparison to ground truth for four seclected materials is shown on the left.

(a) Reference (b) Our result

Figure 13: Diffuse Surface Reflectance. In the absence of specu-
lar surface reflectance, no salient edges are detected in the tempo-
ral traces. Yet, our method is still able to recover the diffuse surface
reflectance accurately.
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Figure 14: Impact of Normal & Registration Errors. (top-middle)
Visualizations of the impact (and reconstruction errors) of incor-
rect surface normals by applying low frequency and high frequency
normal perturbations with varying maximum deviations. (bottom)
Visualizations of the impact and reconstruction errors of (constant
cumulative) drift in the geometry registration. Please refer to Fig-
ure 15 for a reference visualization of the subject illuminated by the
St. Peter’s Basilica lighting environment.

in Figure 12(c), our method also works well on rough specular ma-
terials – the accuracy requirements for the detection of salient edges
decreases for rough specular materials. The proposed method also
works well in the limit case of diffuse-only surface reflectance. Fig-
ure 13 shows the correct reconstruction of a spatially varying dif-
fuse albedo on a synthetic test scene. While our method also pro-
duces some specular NDFs, their corresponding specular albedo is
too low to visually impact the results.

6.3 Impact of Geometry

Surface Normal Errors While many 3D shape acquisition meth-
ods offer very good depth-accuracy, they often do not make guar-
antees with respect to surface normal accuracy, and typically lack
surface normal detail. We therefore focus on the impact of errors
on the surface normals on the accuracy of the reflectance recov-
ery. In particular we consider two cases: low frequence normal
errors (i.e., spatially coherent and slowly varying error) and high
frequency normal errors (i.e., incoherent spatially varying surface
detail). We recover the surface reflectance of a spherical object
with the measured “Wall paper” material [Dong et al. 2010] illumi-
nated by the Uffizi Gallery light probe. In all cases, we use the exact
geometry (a sphere) to recover the surface reflectance, but apply a
perturbation ranging from 2 degrees to 10 degrees to the surface
normals. Figure 14 shows visualizations of the ground truth and
recovered surface reflectance under the St. Peter’s Basilica light
probe, as well as the average BRDF reconstruction error. Both low
and high frequency perturbation are robust to perturbations of 2
degrees or less. While the error on high frequency perturbations
grows larger, it is visually less noticeable (incoherent noise) than
the error due to low frequency perturbations (spatially coherent but
noticeable artifacts).

Registration Errors Our technique also requires accurate regis-
tration of the geometry to each frame in the video sequence. We
currently rely on optical flow to track correspondences which is
known to suffer from drift over long sequences. Figure 14 (bottom)
illustrates the impact of drift on the rotation estimation where a cu-
mulative systematic error was introduced to the rotation of the reg-
istered object in each frame, reaching a maximum error of 5,15, and
25 degrees, respectively, at the end of a 1440-frame sequence. As
can be seen, our method is more robust to registration errors than to
surface normal errors, and only at a substantial 25 degree error, the
differences become noticeable. It should be noted that our method
is not married to a specific registration method, and (future) more
sophisticated registration algorithms can easily be swapped in. In



(a) Reference (b) Horizontal rotation only (c) With additional vertical rotation (d) Input
E=0.593 E=0.059

Figure 15: Insufficient Rotation. A common type of natural light-
ing environment is one where the horizon is the only source of a
strong discontinuity. Only rotating the object horizontally does not
provide sufficient information to recover the surface reflectance (b).
However, an additional vertical rotation (c) produces results close
to the reference (a).

practice, we found that our naive registration algorithm provided
sufficiently accurate results for our examples (including the hand-
rotated coffee mug) without any hand-tuning.

6.4 Impact of Motion

A final variable that impacts the accuracy of the reflectance recov-
ery is the motion applied during acquisition. Since we do not ex-
ploit spatial coherence and process each surface point separately, a
salient edge needs to be “scanned” over each surface point.

In general, our method will fail when the rotations are too fast (e.g.,
causing motion blur), too limited rotations (e.g., near static ob-
ject rotation), or exhibit too limited local motions (e.g., near static
points). Figure 15 illustrates the effects of ill-chosen or insufficient
rotations. In this figure the recovered surface reflectance of a hor-
izontally rotated object in an environment with a single horizontal
salient edge (i.e., horizon) clearly exhibits artifacts. However, an
additional vertical rotation of the object allows us to accurately re-
cover the surface reflectance.

The ideal number of rotation axes depends on the nature of the in-
cident lighting. If the incident lighting contains a long salient edge,
then a rotation around two different axis provides sufficient infor-
mation to accurately recover the surface reflectance – a single axis
suffices if reflectance recovery close to the pole is not necessary.
However, if the incident lighting is a collection of directional light
sources, then a more elaborate acquisition might be required to en-
sure that every surface point “sees” at least one such directional
light source. Figure 16 plots the reconstruction error for a varying
number of rotation axes on three types of lighting environments:
large area light sources with sharp edges (Uffizi Gallery), medium
sized area light sources (Kitchen), and point light sources (St. Pe-
ter’s Basilica). The rotation axes are uniformly distributed in the X-
Y plane: (cos(πi/n),sin(πi/n),0). For the Uffizi Gallery lighting
environment, a two axis rotation already provides low reconstruc-
tion error. For the more challenging St. Peter’s Basilica at least 4
rotation axes are needed.

7 Conclusion

We presented “appearance-from-motion”, a novel method for re-
covering spatially varying isotropic surface reflectance under un-
known natural illumination. Our method significantly simplifies
acquisition; only a video of a rotating object and its geometry are
needed. We demonstrated the effectiveness of our method on a vari-
ety of objects with a wide range of reflectance properties, and under
different types of incident lighting.

We currently ignore self-occlusions and interreflections, limiting
our method to mostly convex object shapes. Taking occlusions
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Figure 16: Impact of Motion. We quantify the impact of motion
by plotting the reconstruction error under three different lighting
environments for a varying number of rotation axes. Two rotation
axes already provide good results for lighting environments with
large area light sources with sharp edges (e.g., Uffizi Gallery). For
more complex lighting environments (e.g., St. Peter’s Basilica) four
or more rotations are needed.

into account would require reformulating the incident lighting to
include an occlusion term: L(ωi)×G(x, t), which can be directly
derived from the available geometry. Including the self-occlusion
term is an interesting avenue for future research, as this can in-
troduce additional salient edges, and thus regularize the recovery
further. Another fruitful direction for future research is the joint re-
covery of shape and high-quality appearance especially on subjects
that exhibit high frequency surface normal variation. We believe
our appearance-from-motion framework can serve as an integral
component of such a system.

Acknowledgements

We wish to thank the reviewers for their constuctive feedback.
Pieter Peers was partially funded by NSF grants: IIS-1217765, IIS-
1350323, and a gift from Google.

References

AITTALA, M., WEYRICH, T., AND LEHTINEN, J. 2013. Practical
svbrdf capture in the frequency domain. ACM Trans. Graph. 32,
4, 110:1–110:12.

ASHIKHMIN, M., PREMOZE, S., AND SHIRLEY, P. 2000. A
microfacet-based BRDF generator. In Proceedings of the 27th
annual conference on Computer graphics and interactive tech-
niques, 65–74.

BARRON, J. T., AND MALIK, J. 2013. Shape, illumination,
and reflectance from shading. Tech. Rep. UCB/EECS-2013-117,
EECS, UC Berkeley, May.

CHO, S., AND LEE, S. 2009. Fast motion deblurring. ACM Trans.
Graph. 28, 5, 145:1–145:8.

DONG, Y., WANG, J., TONG, X., SNYDER, J., LAN, Y., BEN-
EZRA, M., AND GUO, B. 2010. Manifold bootstrapping for
SVBRDF capture. ACM Trans. Graph. 29, 4, 98:1–98:10.

DORSEY, J., RUSHMEIER, H., AND SILLION, F. 2008. Digital
Modeling of Material Appearance. Morgan Kaufmann Publish-
ers Inc.



(b) Beer bottle (d) Starbucks can(a) Coffee mug (c) Rusted copper (e) Toy duck
In

pu
t

Re
nd

er
in

g 
re

su
lts

Di
ffu

se
Sp

ec
ul

ar
Ro

ug
hn

es
s

Re
co

ve
re

d 
ill

um
in

at
io

n

Figure 17: Additional Results. (a) “coffee mug”, (b) “beer bottle”, (c) “rusted copper”, (d) “Starbucks can”, and (e) “toy duck”. One
frame of the input sequence, as well as visualizations of the geometry, the estimated lighting, and the recovered reflectance properties are
shown for each example. For visualization purposes, the recovered tabulated NDF is summarized by the roughness of a Cook-Torrance BRDF
fitted to the recovered reflectance.

GARDNER, A., TCHOU, C., HAWKINS, T., AND DEBEVEC, P.
2003. Linear light source reflectometry. ACM Trans. Graph. 22,
3, 749–758.

GREGSON, J., HEIDE, F., HULLIN, M. B., ROUF, M., AND HEI-
DRICH, W. 2013. Stochastic Deconvolution. In CVPR, 1043–
1050.

HABER, T., FUCHS, C., BEKAER, P., SEIDEL, H. P., GOESELE,
M., AND LENSCH, H. 2009. Relighting objects from image
collections. In CVPR, 627–634.

HERTZMANN, A., AND SEITZ, S. M. 2003. Shape and materials
by example: A photometric stereo approach. In CVPR, 533–540.

HOLROYD, M., LAWRENCE, J., AND ZICKLER, T. 2010. A coax-
ial optical scanner for synchronous acquisition of 3D geometry
and surface reflectance. ACM Trans. Graph. 29, 4, 99:1—-99:12.

LENSCH, H. P. A., KAUTZ, J., GOESELE, M., HEIDRICH, W.,
AND SEIDEL, H.-P. 2003. Image-based reconstruction of spatial
appearance and geometric detail. ACM Trans. Graph. 22, 2, 234–
257.



LEVIN, A., FERGUS, R., DURAND, F., AND FREEMAN, W. T.
2007. Image and depth from a conventional camera with a coded
aperture. ACM Trans. Graph. 26, 3, 70:1–70:9.

LI, G., WU, C., STOLL, C., LIU, Y., VARANASI, K., DAI, Q.,
AND THEOBALT, C. 2013. Capturing relightable human per-
formances under general uncontrolled illumination. Comput.
Graph. Forum 32, 2, 275–284.

LOMBARDI, S., AND NISHINO, K. 2012. Reflectance and natural
illumination from a single image. In ECCV, 582–595.

LUCAS, B., AND KANADE, T. 1981. An iterative image registra-
tion technique with an application to stereo vision. In Proc. Int.
Joint Conf. on Artificial Intelligence, 674–679.

MARSCHNER, S. R. 1998. Inverse Rendering for Computer
Graphics. PhD thesis, Cornell University.

MATUSIK, W., PFISTER, H., BRAND, M., AND MCMILLAN, L.
2003. A data-driven reflectance model. ACM Trans. Graph. 22,
3, 759–769.

NICODEMUS, F. E., RICHMOND, J. C., HSIA, J. J., GINSBERG,
I. W., AND LIMPERIS, T. 1977. Geometric considerations and
nomenclature for reflectance. Monograph 161,National Bureau
of Standards (US).

NISHINO, K., ZHANG, Z., AND IKEUCHI, K. 2001. Determin-
ing reflectance parameters and illumination distribution from a
sparse set of images for view-dependent image synthesis. In
ICCV, 599–606.

OSHER, S., AND RUDIN, L. I. 1990. Feature-oriented image en-
hancement using shock filters. SIAM J. Numer. Anal. 27, 4, 919–
940.

RAMAMOORTHI, R., AND HANRAHAN, P. 2001. A signal-
processing framework for inverse rendering. In Proceedings of
the 28th Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’01, 117–128.

REN, P., WANG, J., SNYDER, J., TONG, X., AND GUO, B. 2011.
Pocket reflectometry. ACM Trans. Graph. 30, 4, 45:1–45:10.

ROMEIRO, F., AND ZICKLER, T. 2010. Blind reflectometry. In
ECCV, 45–58.

ROMEIRO, F., VASILYEV, Y., AND ZICKLER, T. 2008. Passive
reflectometry. In ECCV, 859–872.

SHAN, Q., ADAMS, R., CURLESS, B., FURUKAWA, Y., AND
SEITZ, S. M. 2013. The visual turing test for scene recon-
struction. In 3DV, 25–32.

SHI, J., AND TOMASI, C. 1994. Good features to track. In CVPR,
593–600.

TREUILLE, A., HERTZMANN, A., AND SEITZ, S. M. 2004.
Example-based stereo with general BRDFs. In ECCV, 457–469.

TUNWATTANAPONG, B., FYFFE, G., GRAHAM, P., BUSCH, J.,
YU, X., GHOSH, A., AND DEBEVEC, P. E. 2013. Acquiring
reflectance and shape from continuous spherical harmonic illu-
mination. ACM Trans. Graph. 32, 4, 109.

WANG, C.-P., SNAVELY, N., AND MARSCHNER, S. 2011. Es-
timating dual-scale properties of glossy surfaces from step-edge
lighting. ACM Trans. Graph. 30, 6, 172:1–172:12.

XU, L., AND JIA, J. 2010. Two-phase kernel estimation for robust
motion deblurring. In ECCV, 157–170.

YU, T., WANG, H., AHUJA, N., AND CHEN, W.-C. 2006. Sparse
lumigraph relighting by illumination and reflectance estimation
from multi-view images. In Rendering Techniques, 41–50.

ZHANG, Z. 2000. A flexible new technique for camera calibration.
In IEEE PAMI, vol. 22, 1330– 1334.


