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Figure 1: SVBRDFs reconstructed by our method and relit. The Bear model (a) is recovered from a single image (k=1), while Mouse
(b), Pig (c), and PaintSph (d) are reconstructed from multiple images (k=36, 54, and 17, respectively). The sparse blend solved for at each
surface point combines a single representative (n=1) in the Bear, three (n=3) in Mouse, four (n=4) in Pig, and five (n=5) in PaintSph.

Abstract

We present a novel method for capturing real-world, spatially-
varying surface reflectance from a small number of object views
(k). Our key observation is that a specific target’s reflectance can be
represented by a small number of custom basis materials (N ) con-
vexly blended by an even smaller number of non-zero weights at
each point (n). Based on this sparse basis/sparser blend model, we
develop an SVBRDF reconstruction algorithm that jointly solves
for n, N , the basis BRDFs, and their spatial blend weights with
an alternating iterative optimization, each step of which solves a
linearly-constrained quadratic programming problem. We develop
a numerical tool that lets us estimate the number of views required
and analyze the effect of lighting and geometry on reconstruction
quality. We validate our method with images rendered from syn-
thetic BRDFs, and demonstrate convincing results on real objects
of pre-scanned shape and lit by uncontrolled natural illumination,
from very few or even a single input image.

Keywords: SVBRDF accqusition, Sprase reconstruction

Concepts: •Computing methodologies → Reflectance model-
ing;

1 Introduction

Realistic CG rendering must capture the rich and detailed re-
flectance of real-world materials. Surface reflectance is represented
by the 6D spatially varying bidirectional reflectance distribution
function (SVBRDF), describing radiance at each surface point x
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lit from direction i and reflected to view direction o. High di-
mensionality makes SVBRDF acquisition challenging; exploiting
redundancy is crucial to make it efficient.

Two subproblems must be solved. First, we need a faithful yet com-
pact SVBRDF model. Fewer degrees of freedom need less data to
fit. Second, we need a robust method to identify points on the ob-
ject sharing reflectance. To limit the number of measurements, the
same material should appear at multiple points on the target, and
its outgoing radiance observed in different directions or in response
to different lighting. But such differences yield different measure-
ments, making it hard to link points belonging to the same material.

Several methods directly link points by making simplistic assump-
tions about the spatial distribution of reflectance: that it is low-
frequency [Zickler et al. 2005], or correlated to color [Goldman
et al. 2010; Lombardi and Nishino 2012] or single-view response
to ambient illumination [Aittala et al. 2015].

The sparse basis model reduces degrees of freedom by assum-
ing surface reflectance blends over a limited number of target-
specific basis materials. It links points implicitly by matching cap-
tured measurements to ones synthesized from this basis. The ba-
sis materials and their spatial blending weights can be jointly opti-
mized [Chen et al. 2014], but a blending weight must be determined
for each basis component per surface point. Since tens or hundreds
of basis materials are needed in typical targets, many views are re-
quired for a good reconstruction.

To reduce the number of views, this blend can be further con-
strained as locally linear [Dong et al. 2010; Ren et al. 2011], over a
very small set of “nearest neighbor” basis materials at each surface
point. This sparse blend model in general yields a difficult, mixed
discrete/continuous problem to simultaneously recover the basis as
well as the neighborhood candidates and their blending weights.
Previous methods instead acquire the BRDF basis in a separate
manual phase [Dong et al. 2010] or using a reference chart [Ren
et al. 2011], and then solve for the blending weights from another
set of measurements. The BRDF basis must be chosen beforehand
based on expert knowledge of the target. Furthermore, the optimal
basis components to blend are not necessarily close in BRDF space.

We present a new method for acquiring SVBRDFs from very few
input images which simultaneously exploits the sparse basis and
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sparser blend priors, without manually specifying the basis or link-
ing points via simple proxies. Specifically, we assume that re-
flectance can be modeled by a convex combination over a limited
number of target-specific basis materials, called representatives,
where the number of non-zero blending weights at each point is sig-
nificantly smaller than the number of representatives. Our assump-
tion is that reflectance variation in typical objects forms a patch-
work – while the number of patch types is not known beforehand
and might be fairly large, an individual patch blends between only
a few basic materials.

Our approach minimizes relative reconstruction error of the cap-
tured measurements, and penalizes the number of representatives
(N ) and maximum number of them to blend at any point (n). By
formulating representatives as a linear combination over a large,
predefined set of generic BRDFs, the resulting constrained opti-
mization problem can be solved iteratively via simple quadratic pro-
gramming applied alternately to the representatives and the blend-
ing weights.

Our formulation also enables analysis of lighting and geometry op-
timality and the minimal number of views necessary for robust re-
construction. We find that natural lighting is better than directional,
and curved objects better than flat ones. We validate our approach
with images rendered from synthetic SVBRDFs and evaluate our
system on real objects with known geometry, lit by passive envi-
ronmental lighting. Our method successfully captures SVBRDFs
from very few or even a single image.

2 Related Work

Independent reconstruction Surface reflectance can be recon-
structed independently at each point, for example using a goniore-
flectometer [Mcallister 2002; Lawrence et al. 2006]. Gardner et. al.
[2003] fit a parametric model at each surface point from measure-
ments acquired from scanning a linear light source. Aittala el. al.
[2013] estimate a two-lobe model for each surface point by captur-
ing images lit by an LCD screen. Assuming that natural illumina-
tion contains sharp edges, Dong et. al. [2014] reconstruct surface
reflectance from a video of a rotating object, with known geometry
under unknown environmental lighting. Independent reconstruc-
tion at each point ignores the redundancy of real world materials
and requires many measurements.

Coherent reconstruction Reflectance sharing [Zickler et al.
2005] formulates SVBRDF reconstruction as a scattered interpola-
tion problem, and fits both its angular and spatial distribution with
basis functions. This trades off angular and spatial resolution and
only works with smoothly varying materials. Assuming pixels with
similar chromaticity represent the same material and that bound-
aries between materials are sharp, [Lombardi and Nishino 2012]
estimate the SVBRDF of a curved object from a single image under
unknown point illumination. Our method does not assume smooth-
ness of the spatial blend or link redundant points simply by color.
Another method links points by similarity in normal distribution
function (NDF) over a region of overlap [Wang et al. 2008]. Dense
angular sampling is required to ensure sufficient overlap.

Sparse basis Lensch et. al. [2003] estimate a Lafortune model
basis by progressive clustering over surface points. Their method
models SVBRDFs comprising a small number of discrete BRDFs
but has trouble with smooth variation. Recently, low-rank optimiza-
tion has been used to jointly reconstruct both the basis BRDFs and
per-point weights, as well as a spatially-varying local coordinate
frame [Chen et al. 2014]. Our work adds a sparse blend constraint

to this formulation to reduce the degrees of freedom and thus the
views needed.

Sparse blend The local linear model [Dong et al. 2010; Ren et al.
2011] finds the nearest basis materials and blends only them at each
point. By capturing the BRDF basis in a separate pass, responses
to known lighting and viewing conditions can be synthesized and
compared with the physical measurements to determine which ba-
sis materials are present [Dong et al. 2010]. We generalize to an
arbitrary but sparse (rather than nearby) blend, and automatically
customize the representatives from a single set of measurements.

Goldman et al. [2010] solves for SVBRDFs and normal details
captured under directional lighting, using a fixed number of basis
materials and two blending weights per surface point. Diffuse color
is used to cluster points of similar reflectance to initialize basis ma-
terials. Our method automatically determines the number of basis
materials and blending weights, and works better for shiny objects
by capturing them under environmental lighting without requiring
material segmentation by diffuse color.

The sparse blend assumption has also been used to factorize and
compress measured SVBRDF data [Lawrence et al. 2006]. Because
it is formulated as a matrix factorization problem, the method re-
quires dense (but possibly incomplete) angular measurements cap-
tured under the same lighting and viewing conditions at each point.
It remains unclear how to solve for the basis and blending weights
from a sparse set of measurements, the goal of our work. Lawrence
et al. [2006] also manually determine N , make the objective sparse
by an `2 norm on the set of blend weights (after excluding the one
largest in magnitude), and minimize absolute reconstruction error.
We solve for both N and n, directly penalize `0 sparsity, and mini-
mize relative reconstruction error.

3 Problem Formulation

Measurement setup We acquire surface reflectance of an object
of known geometry under known but passive environmental light-
ing by capturing images of that object from a set of k views. The
object’s geometry is acquired using a previous scan. Captured im-
ages are registered using manually marked points on the object. Ge-
ometry scanning, registration and camera calibration are described
more fully in Section 6. Lighting is assumed to be distant and is
measured using a spherical mirror.

Surface sampling We globally parameterize the object mesh us-
ing iso-chart [Zhou et al. 2004] and represent surface points x via
their (u, v) parametric coordinates in a rectangular image. Parame-
ter space resolution is chosen manually, typically 1024×1024, with
the total number of pixels denoted M . We obtain the outgoing ra-
diance sx by resampling captured images from camera space into
object parameter space. For each surface point x, we find its cor-
responding position in each of the k captured images and compute
its visibility based on the known geometry. If the surface point is
visible, we get the sample value by bilinearly interpolating in the
captured image, taking care not to include samples that are invisi-
ble or span a depth discontinuity. If invisible, we simply record a
response of 0. We finally pack the rgb measurements into an out-
going radiance vector, denoted ŝx, of dimensionality K = 3k.

Response formulation and linearity Outgoing reflectance s can
be formulated as the product integral between incident lighting r
and the surface BRDF P via:

sx(o) =

∫
Ω+

Px(i,o) (n · i) rx(i) di (1)
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where o represents a view direction and i ∈ Ω+ represents a light-
ing direction from the upper hemispherical domain. The surface
normal is a constant n = (0, 0, 1)T in the local frame. Spatially-
varying incident radiance rx can be inferred from the measured dis-
tant environmental lighting r and geometry.

At a particular x, we actually measure responses in just k known
view directions. Assembling these responses into a single vector,

sx = Rx(Px; rx) (2)

where Px represents the BRDF matrix mapping incoming to out-
going radiance, rx is the incident radiance vector, and sx is the
output radiance vector. The rendering operator Rx yields the re-
sponse at x of BRDF Px under incoming radiance rx in each of the
k captured view directions and is obtained either through a real or
synthetic measurement. Note that this operator is linear in both its
arguments for any x. We will see later (Eqs. 3 and 7) that BRDFs
are not explicitly represented as matrices but instead as linear com-
binations over a generic BRDF basis. We hereafter drop the inci-
dent radiance vector as an argument toRx, as it is understood to be
derived from a single known environment map.

Synthetic measurement uses ray tracing given the BRDF, lighting,
and geometry, and respects shadowing effects from the object onto
itself. Inter-reflections are more challenging because they depend
on the unknown reflectance as well as known geometry and are
currently ignored. More details are included in Section 4.

Reflectance model We represent spatially-varying reflectance
by blending between a limited set of representatives Pi to obtain

Px =

N∑
i=1

wx,i Pi

∣∣∣∣∣ ‖wx‖1 = 1, wx,i ∈ [0, 1] (3)

where wx,i is the weight for the i-th representative BRDF at point
x. The first constraint applies the `1 norm on the weight vector and
forces a convex blend of representatives; i.e., the weights sum to 1.
Representative BRDFs are specific to the object and are themselves
formulated as a linear combination over a larger basis set of generic
BRDFs as we will explain later.

Reflectance sparsity We constrain the reconstruction by penal-
izing N , the total number of representative BRDFs, as well as n,
the maximum number of representative BRDFs that can be blended
at any given surface point. Both N and n are global parameters for
the entire object. We then sum the two sparsity penalties to obtain

λ0 n+ λ1 N. (4)

Choosing values for the penalty weights λ0 and λ1 is discussed in
Section 7.

Objective We finally combine relative reconstruction error for
the outgoing radiance response with our previous sparsity penalty
from Eq. 4, obtaining the following overall objective to minimize:

arg min
w,Pi,n,N

∑
x

‖ ŝx − sx‖2

‖ŝx‖2
+ λ0 n+ λ1 N∣∣∣∣∣ ‖wx‖1 = 1, ‖wx‖0 ≤ n, wx,i ∈ [0, 1]

(5)

where ŝx is an actual radiance measurement derived from captured
images and sx is a synthetic measurement defined by rendering via
Eq. 2. The second constraint applies an `0 norm on the weight

vector wx to ensure that its number of non-zero components is
bounded by n. Unsubscripted norms represent `2, which always
appear squared in our objectives.

4 Sparse Solver

The problem we have formulated in Eq. 5 is a challenging non-
linear constrained minimization. It is high-dimensional, multiplies
unknowns together in the form of blending weights and representa-
tive BRDFs, and mixes discrete and continuous variables. We itera-
tively solve it by alternating solution for the representative BRDFs,
Pi, and the weights at each surface point, wx. Sparsity parameters
N and n are optimized progressively in an outer loop.

Representative optimization To compute the representative
BRDFs, we fix the weights wx. Eq. 5 then becomes:

arg min
Pi

∑
x

‖ ŝx −Rx

(∑N
i=1 wx,i Pi

)
‖2

‖ŝx‖2
(6)

after excluding irrelevant constant terms and constraints.

Representative BRDFs for the object are represented as a linear
combination over a much larger set of generic BRDFs via

Pi =

N∗∑
j=1

w∗
i,j P

∗
j

∣∣∣∣∣ w∗
i,j ≥ 0 (7)

where a generic basis component is denoted P∗
j from a set com-

prising N∗ � N members. We therefore search for the N∗N
unknown weights w∗

i,j minimizing Eq. 6. This is a quadratic ob-
jective with linear inequality constraints: a QP (quadratic program-
ming) problem. We apply our own C++ implementation of Matlab’s
QuadProg. Weights on the generic BRDFs w∗ are not constrained
to sum to 1 and represent a non-negative linear combination rather
than a convex blend.

Generic basis We model the generic BRDF basis P ∗(i,o) using
the Cook-Torrance model [Cook and Torrance 1982] via:

P ∗(i,o) =
D(h)G(i,o)F (o · h)

4(i · n)(o · n)
(8)

where D(h) is the microfacet normal distribution function (NDF)
and h the halfway direction. D is represented using the Beckmann
model:

D(h) =
exp(− tan2(α)/σ2)

π σ2 cos4(α)
, α = cos−1(h · n) (9)

where σ is the roughness parameter. The shadowing and masking
factor G(i,o) is given by the analytic function:

G(i,o) = min

(
1,

2(h · n)(i · n)

o · h ,
2(h · n)(o · n)

o · h

)
. (10)

The Fresnel factor F (o · h) is based on Schlick’s model [Schlick
1994]:

F (o · n) = τ + (1− τ)(1− o · n)5 (11)

where τ is the Fresnel reflectance coefficient. Our generic basis
then samples over the 2D space of surface roughness and Fresnel
factor.

Specifically, we sample 35 different roughness values σ logarith-
mically distributed in the range [0.001, 0.5]. Schlick’s model is a
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convex linear combination of two components: 1 and (1− o · n)5.
Therefore, for each roughness value we only need to sample two
Fresnel coefficients, τ = 0 and τ = 1. We also add a purely Lam-
bertian BRDF to the generic basis set.

The final generic basis set comprisesN∗ = (35×2+1)×3 = 213
BRDF components, via the rgb coordinate axes (1,0,0), (0,1,0) and
(0,0,1). Each color channel of the representative basis is indepen-
dent and can be solved for separately. Colored reflectance is en-
coded solely in the representatives; spatial blend weights in Eq. 3
are monochrome. We note that other generic BRDF basis sets can
be substituted in our framework.

Blend optimization To solve for the blending weights, we fix the
basis BRDFs Pi as well as N and n. Each surface point x can then
be solved for independently. For each surface point in sequence, we
find its weight vector wx by minimizing:

arg min
wx

‖ ŝx −Rx

(
N∑
i=1

wx,i Pi

)
‖2∣∣∣∣∣ ‖wx‖1 = 1, ‖wx‖0 ≤ n, wx,i ∈ [0, 1].

(12)

The weight summation constraint ‖wx‖1 = 1 can be eliminated
by the trick of setting the last weight value as wx,N = 1 −∑N−1

i=1 wx,i, and reducing the degrees of freedom by one. How-
ever, the discrete nature of the n-way spatial blend makes the sys-
tem hard to solve. It is practical to apply a brute force strategy for
the relatively small values of n required in real examples, usually
no more than 5. Knowing which n elements of wx are non-zero
converts the problem to a (purely continuous) quadratic program-
ming problem. We try all possible combinations of n nonzero basis
BRDFs chosen from the N representatives, and find the minimal
among them. Section 6 proposes a method to reduce the number of
candidates.

Precomputed rendering The representative BRDF and weight
optimization steps both involve synthesizing the outgoing radiance
response from an unknown linear combination of known BRDFs.
We can accelerate the computation by exploiting the linear na-
ture of the rendering operator, for which Rx

(∑
j w

∗
j P

∗
j

)
=∑

j w
∗
j Rx(P∗

j ). Assuming the geometry and environmental light
are fixed, we precompute rendering results for each generic BRDF
basis component j, yielding N∗ K-channel images

s∗x,j = Rx(P∗
j ). (13)

These are stored in the object’s parameter space, matching the re-
sampled images of captured radiance, ŝx, and allowing easy so-
lution of Eq. 6 in terms of sum of squared pixel differences over
images. Similarly, at the start of each weight optimization, we up-
date rendered images for each representative BRDF i by computing
the weighted combination of generic basis renderings. Eq. 7 yields

sx,i = Rx(Pi) ⇒ sx,i =

N∗∑
j=1

w∗
i,j s

∗
x,j . (14)

We can then solve Eq. 12 in terms of sum of squared K-channel
pixel differences between ŝx and linear combinations of these sx,i.

Optimizing n andN We optimize n andN by brute force search
in the outer loop of the optimization. Starting from 1, we progres-
sively increment n. For each n, we progressively increment N also

starting from 1. In either loop, we terminate the search when the
objective first increases and chose the preceding value of N or n.
This is not a globally optimal solution, but produces good results in
our experiments.

Initialization Starting at N = 1, we initialize the per-surface
blending weight as wx = 1 and perform representative optimiza-
tion to find the single corresponding representative. Then in each it-
eration that increments N by 1, we apply the following, admittedly
ad hoc procedure. We select surface points with relative fitting er-
ror larger than a threshold λN and optimize using only this subset to
compute a single, newly-added representative with blending weight
wx,N = 1 at those points. Other points retain the blending weights
they had before on the old representatives, with zero weight on this
newly added representative. The threshold begins at λ1 = 0.1 and
progressively decreases via λN+1 = 0.8λN .

5 Analysis

Quadratic objectives in Eqs. 6 and 12 correspond to (over-
constrained) linear systems. It is useful to describe these so we can
analyze solution robustness in terms of matrix conditioning/rank.
This analysis ignores constraints, focusing instead on the objective
gradient to which this linear system is directly related.

Linear systems Representative optimization (Eqs. 7 and 6) can
be rewritten:

arg min
w∗

∑
x

γx ‖ ŝx −
N∑
i=1

N∗∑
j=1

wx,i w
∗
i,j s

∗
x,j ‖2 (15)

where ŝx, wx,i, and s∗x,j are fixed, and γx = ‖ŝx‖−2. The lin-
ear system associated with this quadratic objective has KM rows
(constraints where a radiance response must be matched) andNN∗

columns (unknown component of the weight matrix w∗).

Blend optimization at a given x (Eq. 12) can be rewritten:

arg min
wx

‖ ŝx −
N∑
i=1

wx,i sx,i ‖2. (16)

The linear system associated with this quadratic objective has K
rows and N columns.

At a given pixel x, generic and representative basis renderings form
the K × N∗ matrix s∗x = [s∗x,1, s

∗
x,2, . . . , s

∗
x,N∗ ] and the K × N

matrix sx = [sx,1, sx,2, . . . , sx,N ], respectively. Generic weights
w∗ form a N × N∗ matrix while blend weights wx form an N -
dimensional vector. Eq. 14 can then be rewritten

sx = s∗x w
∗T . (17)

With these defintions, Eq. 16 yields the derived linear system

sx wx = ŝx, (18)

while Eq. 15 yields the derived linear system at each x

γx S
∗
x ·w∗ = ŝx. (19)

The a · b operator above represents the sum of products over all
N ×N∗ components of its two matrix operands and S∗

x is the K×
N ×N∗ tensor given by

S∗
x = γx wx ⊗ s∗x (20)

= γx


wx,1 s

∗
x,1 wx,1 s

∗
x,2 . . . wx,1 s

∗
x,N∗

wx,2 s
∗
x,1 wx,2 s

∗
x,2 . . . wx,2 s

∗
x,N∗

...
...

...
...

wx,N s∗x,1 wx,N s∗x,2 . . . wx,N s∗x,N∗

 .
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Figure 2: Linear system robustness as a function of the number of captured views k. We compare 6 experimental situations varying both
lighting and geometry (legend at far right), using three measures of robustness: worst-case rank (a) and condition number (b) of the blend
matrix, and rank of the representative matrix (c). The green curve in (a) actually overlies the red and yellow ones, as well as the result using
the optimized direction set of [Nielsen et al. 2015] (not shown in legend).

To convert this into proper matrix form, we simply rearrange w∗

into a 1D vector, denoted w̃∗, and concatenate all N rows of S∗
x

into one, forming the K ×NN∗ matrix S̃∗
x.

Matrix rank analysis For blend optimization, the constraints
‖wx‖0 = n and ‖wx‖1 = 1 imply that wx has n − 1 degrees
of freedom. By Eq. 18, sx must have rank at least n − 1 to suffi-
ciently constrain these. Then by Eq. 17, s∗x must have rank at least
n− 1. We call s∗x the blend optimization matrix.

For representative optimization, aggregating equality constraints
across pixels combines rows of S̃∗

x over every x to form an MK ×
NN∗ matrix S̃∗. This matrix must be full rank for the linear sys-
tem in Eq. 15 to sufficiently constrain the degrees of freedom in
w̃∗. Any columns selected from it must be linearly independent. If
we select those columns related to a single representative BRDF i
(i.e., a single row of the weight matrix, w∗

i ), the resulting submatrix
should have rank N∗. From Eq. 20, we see that a row in this sub-
matrix is scaled by the same value γx wx,i which can be removed
without changing the rank. We finally obtain theKM×N∗ matrix

s∗ =


s∗x1,1 s∗x1,2 . . . s∗x1,N∗

s∗x2,1 s∗x2,2 . . . s∗x2,N∗

...
...

...
...

s∗xM ,1 s∗xM ,2 . . . s∗xM ,N∗

 (21)

whose rank must be N∗ (full) to determine a unique solution for
any w∗

i . We call s∗ the representative optimization matrix.

Note that both rank conditions derived above are necessary but not
sufficient, allowing analysis that depends only on the generic ba-
sis and not the unknown set of representative BRDFs or the spatial
blending weights. The importance of the two matrices is clear intu-
itively: we must be able to linearly separate responses for each of
the generic basis components, both at each x and over the object as
a whole, in order to compute their optimal linear combination.

Application Using these tools, we experimentally study how
lighting (environmental vs. directional) and object geometry (plane
vs. spherical cap vs. hemisphere) affect linear system robustness
as k grows. Results are shown in Figure 2. The normal map of the
plane samples a single direction while the cap and hemisphere cover
a solid angle of π and 2π respectively. Blend matrix results (in a
and b) summarize worst case over all x; i.e., minimum rank and
maximum condition number. For directional lighting, we choose a
random light and view direction in each trial and average over 80
trials. For environment map (EM) lighting, we again average over
80 trials: four EMs (St.Peters, Grace, Grove and Uffizi from [De-
bevec 1998]) × 20 trials picking a random EM rotation and view
vector for each EM.

A directional light point-samples the surface BRDF. On shiny sur-
faces, all angular variation occurs near the reflection direction and
is easy to miss. Figure 2a shows that the minimum rank of s∗x grows
slowly with increasing k for randomly-selected directional lighting,
regardless of the geometry. Environmental lighting yields more re-
sponse variation and thus faster growth in rank. This result is con-
firmed by an analysis of condition number, shown in (b), where
smaller is better. Our analysis assumes n=4, so the required condi-
tion number of s∗x is computed as the ratio of its maximum singular
value over the third (n− 1) biggest.

Since all s∗x are identical on the plane, one can choose special sets
of light and view directions [Nielsen et al. 2015, Table 1] to pro-
duce a high rank matrix. The resulting curve superimposes over the
(best) green curve in (a), along with the three curves for environ-
mental lighting. In other words, by carefully rather than arbitrarily
choosing a light/view directions, we can obtain results equivalent to
environmental lighting, based on the blend matrix. Environmental
lighting is still superior to directional for representative matrix anal-
ysis with curved geometries, shown in (c). In this case, the surface
normal varies with x and it becomes unclear how to choose opti-
mal light/view directions. We conclude that natural, environmental
lighting is superior to directional for reflectance acquisition.

Shape also affects robustness. While condition number analysis
of the blend matrix (in b) finds the three geometries (plane, cap,
and hemisphere) similarly robust, rank analysis of the represen-
tative matrix (in c) significantly favors curved geometry over flat,
especially for small k. Results are similar for the cap and hemi-
sphere: while some normal variation is critical, complete coverage
is unnecessary.

6 Implementation

We implemented our reconstruction algorithm on an Intel Xeon E5-
2630 V3 workstation with 64GB of memory. The object’s shape
was first captured using an Artec Space Spider 3D scanner, and
reflectance images were acquired by a Canon EOS 5D Mark III
digital camera with EF 70-200F4L lens. Luminance measurements
were linearized by converting 14-bit RAW image values using the
radiance response curve supplied in the RAW file. We calibrated
the intrinsic parameters of the camera using the method of Zhang
et al. [2000]. Environmental lighting was captured with a spheri-
cal mirror. To manipulate the view, we manually move the camera
mounted on a tripod. Capture takes less than 10 minutes including
setup. Reconstruction time ranges from 20 to 380 minutes depend-
ing on k and the target’s reflectance complexity.

Registration We align the shape in the first captured frame by
manually marking corresponding points in the image and on the
geometry. We then apply ICP to determine the rigid transformation
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aligning the geometry to its pose in the captured image. Corre-
spondences between images are provided by SIFT features [Lowe
1999]. The environment map is captured with the same view as the
first captured frame, allowing us to infer its orientation with respect
to the target. For objects without significant texture (like DustSph),
we place an additional checker pattern in the scene to infer camera
pose. For spherical shapes, we skip the step of pre-scanning the
geometry and simply align silhouettes.

Search pruning Optimizing blending weights via Eq. 12 in-
volves a brute-force search of all combinations of n representatives
from the N available. Computation increases exponentially as N
and n increase. To reduce it, we precompute a smaller set of combi-
nations by performing the full search on a randomly selected subset
of 5% of surface pixels. We further remove outliers by culling ba-
sis combinations to cover 99% of those sampled pixels. The basis
combination search space is updated before each iteration. To make
sure optimization progresses downhill, we also add for each pixel
the single basis combination selected for it in the previous iteration.

7 Results

Rendered images appearing in figures apply fixed gamma correc-
tion (of 2.2) and a constant exposure setting normalized by average
intensity of the environment map (EM). Quantitative image error
in figures and plots is measured in linear space without tone map-
ping or exposure manipulation, in terms of square root of sum of
squared error normalized by sum of squares of the reference image
(NRMS), and considering only foreground pixels covered by the
target object.

7.1 Synthetic validation

Experiments measure image error after applying the Uffizi EM, dif-
ferent from the one applied in synthetic capture (typically Grace or
St. Peters). In experiments that vary k, input views are randomly
generated from a uniform spherical distribution with all methods
sharing the same initial subsequence of views from this randomly-
generated sequence.

Number of views We created a synthetic target mapping the
“copper” SVBRDF from [Wang et al. 2008] onto a sphere. Sim-
ulating capture in the Grace EM, we measured reconstruction error
in rendered image space as a function of the number of views. Fig-
ure 3 shows visual reconstruction quality for k=5 and k=10, while
Figure 4 plots quantitative image error with increasing k. Error is
averaged over 10 trials that randomly choose the views. Note the
significant “knee” in the curve at k=3, after which error levels off.

Sparseness penalty values We investigated how sparseness
penalty weights, λ0 and λ1, affect reconstruction quality using
the same “copper” target used in the previous experiment. Fixing
k=10, we ran the solver with penalty weights varying in the range
λ0 ∈ [0.0032, 0.012] and λ1 ∈ [0.0012, 0.0052]. The algorithm
produced very similar results, both visually and in terms of quan-
titative image error, with NRMS image error smaller than 5% in
all cases. Underweighting the sparseness penalty overfits the data
with an unduly complicated model and yields poor reconstruction
in novel situations. Overweighting it yields a high-error reconstruc-
tion to the given measurements. But a wide range of intermediate
penalties yield good results.

Search pruning Using the copper SVRBDF and Grace EM
again, we compare results by brute-force search of basis combi-

Figure 3: “Copper” validation, k=5 (b) and k=10 (c). Error color-
coded in inset.

Figure 4: “Copper” error as a function of k.

nations against our proposed pruning. We obtain similar fidelity
using 47% less computation, as shown in Figure 5, which applies
two novel EMs in the rendering (Uffizi and Grove).

Sparseness effectiveness To isolate the effects of our two
sparseness terms, we perform reconstruction with only one or the
other by setting λ0 = 0 or λ1 = 0. We designed a synthetic
SVBRDF with known sparseness by choosing four materials from
the MERL database [Matusik et al. 2003] (pink-plastic, hematite,
yellow-phenolic and blue-metallic-paint), and blending two of them
at each surface point. The ground truth is thus n=2 and N=4. We
applied this material to a sphere and simulated capture in the St. Pe-
ters EM.

As shown in Figure 6, our method with both terms achieves ex-
cellent visual quality and low NRMS error with k=6 views. With-
out the sparse basis term, the number of basis components freely
increases until it uses the entire generic basis as representatives,
entailing many more degrees of freedom. Not surprisingly, many
more views k=75 are then required to achieve equal quality results.
Removing the sparse blend term allows n=N ; this is equivalent to
a global linear model. Again, more views k=12 are required to de-
termine the additional weights per surface point.

Comparison to existing methods The global linear method
[Chen et al. 2014] is also based on the sparse basis assumption but
lacks our sparse blend prior. As shown in Figure 6c using recon-
struction code supplied by the authors, it produces poor results for
small k, requiring a much bigger k=62 for an equal-quality recon-
struction. Even without exploiting the sparse blend assumption,
our method needs fewer views (k=12) to achieve an equal-quality
reconstruction. This is because our method directly minimizes N
whereas Chen applies an approximate `0 norm (based on the nu-
clear norm of w∗) that over-estimates it, enlarges the basis set, and
so requires more measurements. Specifically, our method with only
the sparse basis term yields the ground truth number of representa-
tives N=4, whereas [Chen et al. 2014] yields N=9. Including the
sparse blend term then further improves our reconstruction.

Goldman et al. [2010] proposed a method with similar but less
general sparseness assumptions: they assume the material is com-
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Figure 5: Accelerated basis search. Reconstruction results by (b)
brute-force search, and (c) pruned search are compared with the
reference (a). Pruning produces similar quality in about half the
computation time. Error is visualized in the inset.

Figure 6: Sparseness effectiveness. Our method (b) needs only
k=6 views to achieve good visual quality and small quantitative
error on this synthetic example. Retaining only the sparse basis (d)
or the sparse blend term (e) alone requires more views (k=12 or
k=75) to get equal quality results. The global linear method [Chen
et al. 2014] yields poor quality for k=6 (c), requiring k=62 views
(f) to match our quality.

posed of a known number of representatives in which n=2 of them
are blended at each surface point. To compare our method, we
chose two datasets which intentionally break the n=2 assump-
tion, one synthetic and one measured. The synthetic SVBRDF
blends between n=3 BRDFs chosen from our generic basis with
different diffuse/specular colors and roughness values, via barycen-
tric interpolation over a spherically-projected equilateral triangle.
The measured SVBRDF is the “copper” dataset from [Wang et al.
2008]. Since [Goldman et al. 2010] only supports directional light-
ing, we perform its synthetic capture with randomly placed direc-
tional lights distributed uniformly over the sphere. We use our
own implementation of Goldman’s method, which fixes rather than
reconstructs the known lighting and (spherical) normals. It tries
N ∈ {5, 10, 15, 20, 25} and selects the result having lowest error.
We test two variants of our method, one fixed at n=2 and one with
n free, using images captured under the St. Peters EM. Figure 7
shows that a restricted n=2 blend fails to represent these materials.
Because it’s further limited by directional lighting, [Goldman et al.
2010] requires even more measurements while producing results
with larger reconstruction error.

Figure 7: Comparison with [Goldman et al. 2010]. The top row
represents a synthetic material while the bottom is a measured one.
Our method (b) needs k=12 views to achieve good quality results.
Forcing the blend sparsity at n=2 in (c) yields larger quantitative
error. By using directional light sources, [Goldman et al. 2010] in
(d) requires even more measurements k while yielding still larger
error.

Figure 9: Fresnel validation. The left and right halves of this syn-
thetic target differ only in Fresnel coefficienti, τ . Our reconstruc-
tion accurately captures this subtle variation.

Generic basis sufficiency and EM capture independence
With each of the 100 MERL materials [Matusik et al. 2003] mapped
homogeneously over a sphere, we simulated the capture of a single
image in the Grace and St. Peters EMs, and computed rendered re-
construction error in Grove and Uffizi. A selection of results are
shown in Figure 8, with images for all MERL materials available in
the supplement. Two main observations can be made. One is that
our generic basis works well: we get excellent visual and quanti-
tative fidelity for all 100 MERL materials. The second is that our
method’s reconstruction quality does not significantly depend on
which EM was used in the synthetic capture, as long as it is natural
and complex.

Fresnel recovery We designed a spherical target consisting of
two materials differing only by Fresnel parameter: τ=0.15 (left
side) and τ=0.85 (right side). We adapt the specular coefficient
ρs on each side so as to normalize BRDF response for lighting in-
cident in the surface normal direction. Both sides have the same
roughness, σ=0.165. We synthetically capture applying the Grace
EM using k=8 random views. Figure 9 shows our method’s ability
to faithfully recover τ in this challenging case.

Error sensitivity Geometry and image registration accuracy ob-
viously affect reconstruction quality. We simulate geometry er-
ror by perturbing each surface normal randomly. We tested four
homogeneous spheres of different roughness, in the range σ ∈
[0.05, 0.20]. Figure 10 plots reconstruction error in image space
as a function of perturbation amplitude measured as the average an-
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Figure 8: MERL dataset validation. Applying each MERL material to a homogeneous sphere, we perform synthetic capture under the St.
Peters and Grace EMs. We show images of our reconstructed results compared with the reference and the fit of [Ngan et al. 2005] under two
novel EMS: Grove (left four images) and Uffizi (right four). Rendering error for all 100 MERL BRDFs is plotted at the top (note log scale),
averaged over the Grove and Uffizi EMs.

gle between the perturbed normal and the actual one. Figure 11
shows the effect of error in camera position. We apply uniform ran-
dom noise to the camera position (measured as a percentage of the
camera’s distance to the object) while keeping the camera pointed
at the target’s center, and plot image error as a function of noise
amplitude. Not surprisingly, shinier materials are more sensitive to
error in both experiments.

Object k n N time (mins)
Bear 1 1 10 12
Kitty 5 2 8 123
Billiard 20 2 6 152
PaintSph 17 5 6 280
Pig 54 4 8 310
Mouse 26 3 9 253
DustSph 22 3 5 190
CopperPlt 45 5 18 298

Table 1: Real object capture data.
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Figure 10: Normal error sensitivity.

Figure 11: Camera error sensitivity.

7.2 Real object capture

We captured reflectance from eight real objects with data summa-
rized in Table 1. The EM acquired for each target is shown in Fig-
ure 12. In practice, we manually place views to distribute them
roughly uniformly around the object. Note that the required num-
ber of views, k, is affected by many properties of the acquisition
target’s geometry and reflectance (e.g. surface visibility, reflectance
complexity and redundancy), and the lighting. Using the analysis
from Section 5, with geometry and lighting fixed, we can determine
k by increasing it until reaching a desired condition number on the
blend and representative optimization matrices.

Figure 15 visualizes some reflectance properties of the objects we
acquired. We observed little spatial variation in acquired τ in these
examples.

Bear and Kitty comprise a number of different basic materials
(N=10 for Bear and N=8 for Kitty) piecewise-distributed with lit-
tle blending. Our method efficiently reconstructs such objects with
a minimal number of measurements, by restricting itself to a suit-
ably sparse blend. The Billiard example combines a similar patch-
work with gradual shininess variation corresponding to a wear pat-
tern. Our model reproduces both sharp material boundaries and
large-scale smooth variation. The PaintSph, DustSph and Copper-
Plt targets exhibit rich material variation and textural detail and
span the range of specularity from mirror-like (part of DustSph),
through glossy (PaintSph), to rough (CopperPlt). The Pig mixes
complicated geometry (e.g. headcloth, ears) and non-trivial mate-
rial variation, while the Mouse exhibits material discontinuities as
well as smoother smudging and wear. Representative BRDFs and
the blending weight map can be found in the supplementary mate-
rial.

Figure 13 compares reconstruction on the Kitty model for k=1 and
k=5. Single-image reconstruction provides good results. Transi-
tions between materials and details around the kitty’s whiskers are
improved using more views. Note that our method automatically
adapts n as the input k is changed.

We captured photos of each object under lighting different from
that used in acquisition, and compare these photos with renderings
of our reconstruction in Figure 14. The novel lighting we apply

Figure 12: Capture EMs for real objects: (a) Bear and Kittty; (b)
Billard and PaintSph; (c) Pig, DustSph and CopperPlt; (d) Mouse.

Figure 13: Single vs. multiple measurements.

was captured with a spherical mirror, as in reflectance acquisition.
Overall reconstruction quality is shown by applying novel lighting
in Figures 1 and 16, and in our video results.

8 Conclusion

By modeling reflectance variation using a small set of represen-
tative materials, an even smaller number of which are convexly
blended at each surface point, we obtain a faithful SVBRDF re-
construction using surprisingly few captured views. We designed
a sparse solver to jointly compute the representatives and spatial
blend weights, based on an objective that considers relative fi-
delity to the sparse measurements and directly penalizes the num-
ber of representatives and maximum number of them to blend. Our
method is automatic and avoids predetermining the representatives
or linking points via simplistic assumptions on spatial correlation.
It requires many fewer views than the global linear method. Notions
of the generic basis and linear systems we develop let us evaluate
how capture factors such as lighting and target shape affect recon-
struction robustness and the minimal number of views it demands.

Our method works well for a wide range of materials including
ones with spatially-varying glossiness and even microfacet-based
Fresnel behavior, but has several limitations. It ignores anisotropic
BRDFs and subsurface scattering effects. It depends on the generic
basis, though we have shown that our choice reconstructs real-
world isotropic materials from the MERL database accurately. It
assumes surface geometry is known and registration between im-
ages and geometry is accurate. In future work, we’d like to speed
up our reconstruction algorithm, explore other (perhaps nonlinear)
generic BRDF representations, extend to active lighting, and cap-
ture anisotropic BRDFs and normal maps.
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Figure 14: Visual comparison under novel lighting. We compare our reconstruction (bottom) to a reference photograph (top) under lighting
that differs from the acquisition environment.

Figure 15: Recovered reflectance properties. For visualization, we fit the NDF with a single Beckmann lobe and show the fitted roughness. In
fact our representation is more complex, and is instead given by a linear combination over our generic basis. Diffuse and specular coefficients
are separated using the Lambertian component included in our generic basis. Full material maps can be found in the supplementary
materials.
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Figure 16: Additional results. Renderings under two novel EMs (St. Peters and Grove) are shown, along with a single captured frame and
the acquired geometry in the top row.
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