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Figure 1: Relighting of various scenes using light transport captured by our method from a small number of images.

Abstract

We present a neural network regression method for relighting real-
world scenes from a small number of images. The relighting in
this work is formulated as the product of the scene’s light transport
matrix and new lighting vectors, with the light transport matrix re-
constructed from the input images. Based on the observation that
there should exist non-linear local coherence in the light transport
matrix, our method approximates matrix segments using neural net-
works that model light transport as a non-linear function of light
source position and pixel coordinates. Central to this approach is
a proposed neural network design which incorporates various ele-
ments that facilitate modeling of light transport from a small im-
age set. In contrast to most image based relighting techniques, this
regression-based approach allows input images to be captured un-
der arbitrary illumination conditions, including light sources moved
freely by hand. We validate our method with light transport data of
real scenes containing complex lighting effects, and demonstrate
that fewer input images are required in comparison to related tech-
niques.
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1 Introduction

The appearance of a scene arises from the transport of light within
it. In realistic rendering algorithms, this light transport is computed
from complete scene information including geometry, reflectance
properties, and lighting environment. With this information, the
new appearance of the scene under different illumination can be
readily determined. For a real-world scene where such data is usu-
ally unavailable, the effects of light transport can instead be inferred
from images that exhibit scene appearance under different lighting
conditions. Represented in a light transport matrix that relates im-
age radiance to lighting condition, this light transport information
can be used to relight real-world scenes through computation of a
matrix-vector product [Ng et al. 2003]:

I = M L, (1)

where the outgoing radiance I is expressed as a vector over Np im-
age pixels, the lighting condition L is modeled by a vector of inci-
dent radiance from Ns light sources, and the light transport matrix
M is of dimension Np×Ns. Image-based relighting in this manner
produces high realism without the need for scene modeling. The
key challenge of this approach is in reconstructing the light trans-
port matrix from images acquired of the scene.

Various techniques have been presented in the literature for recon-
struction of the light transport matrix. A brute-force solution is
to directly measure the entries of the light transport matrix [De-
bevec et al. 2000; Wenger et al. 2005] by capturing an image of the
scene under each of the canonical light sources (corresponding to
the columns of the light transport matrix). This requires acquisi-
tion of a considerable number of images, and specialized devices
are needed to accurately control the lighting. Another approach is
to exploit sparseness [Zongker et al. 1999; Peers et al. 2009; Sen
and Darabi 2009] or coherence [Fuchs et al. 2007; Wang et al.
2009; O’Toole and Kutulakos 2010] in the light transport matrix
to reduce the number of images needed for light transport recon-
struction. However, these methods are either designed for specific
lighting effects [Zongker et al. 1999] or rely on special hardware
to capture images under particular lighting and/or viewing condi-
tions [Fuchs et al. 2007; Wang et al. 2009; O’Toole and Kutulakos
2010]. For scenes with occlusions and high-frequency lighting ef-
fects (e.g., hard shadows, sharp specular reflections, and caustics),
these techniques require numerous images to reconstruct a high-
resolution light transport matrix.



In this paper, we present a method for relighting a real-world scene
from a small number of easily acquired images. The key obser-
vation in this work is that the entries of the light transport matrix
should generally exhibit a local, non-linear coherence, since scene
points or light sources in proximity to each other often share signifi-
cant commonalities in their light transport, yet non-linear variations
may exist due to high-frequency lighting effects or surface features.
Based on this observation, we model the light transport as a func-
tion of pixel coordinates and light source position, and approximate
this function with a set of neural networks. The neural networks
are trained on images of the scene captured under different known
lighting conditions, and then discrete samples of the regressed func-
tion are taken to reconstruct the light transport matrix.

Neural networks have been used to compress the low-frequency
shadowing [Nowrouzezahrai and Snyder 2009] and indirect light
transport [Ren et al. 2013] of synthetic scenes. Both methods as-
sume that the light transport data is completely known, and they uti-
lize neural networks together with physical properties of the scene
to compress the data into a compact form. Different from these light
transport compression techniques, our method aims to reconstruct
the light transport matrix of a real-world scene from just a small
subset of the light transport data. This task presents significant
challenges. On one hand, light transport in scenes with complex
high-frequency lighting effects are difficult to approximate with a
neural network. On the other hand, the reconstruction should uti-
lize only a small number of image samples in order to simplify data
acquisition. In addition, the physical properties of the imaged scene
are unknown.

To tackle these challenges, we develop a neural network model that
provides high-quality approximations of light transport with a min-
imal number of captured images. This design includes four main
elements. The first is the use of neural network ensembles [Hansen
and Salamon 1990], which are a set of neural networks indepen-
dently trained on different subsets of the training data. In contrast
to a single neural network trained on all the data, a neural network
ensemble yields a collective prediction of light transport that is less
sensitive to local optima in neural network training. Secondly, we
augment the input of each neural network with the average color of
image values at each pixel. The average color of pixels provides an
indication of their similarity in material and geometric properties.
Accounting for this similarity can facilitate neural network mod-
eling of scenes with rich material and geometric variations [Ren
et al. 2013]. The third element is the modeling of different parts
of the light transport function with different neural network ensem-
bles. We present an adaptive fuzzy clustering scheme for partition-
ing the light transport space into more coherent segments which can
be more effectively approximated by neural networks.

The fourth element of our model, which represents a key step in
our solution, is the design of a neural network structure with a suit-
able ensemble size and an optimized number of nodes. For a larger
number of nodes, a greater number of images need to be captured
to train the neural network. At the same time, a neural network with
more nodes can model a larger segment of the light transport space.
Through an empirical analysis, we analyze the quantitative rela-
tionship between these factors on a set of representative scenes and
derive a neural network configuration for effective reconstruction
of light transport in similar scenes with a small number of captured
images.

With the proposed design and usage of neural networks, our method
effectively exploits the non-linear local coherence in light transport
to reconstruct the light transport matrix from a small number of im-
ages. We validate this relighting method on existing light transport
data, and verify the need for fewer images compared to other light
transport reconstruction methods [Wang et al. 2009; O’Toole and

Kutulakos 2010] on scenes with complex lighting effects. More-
over, our regression-based reconstruction method allows images
captured under any known illumination to be used for training,
which obviates the need for special lighting devices. For the light-
ing in our image acquisition, we freely move a point or linear light
source by hand. Results demonstrate this simple manner of captur-
ing images to be practical for our reconstruction method.

2 Related Work

The light transport of a scene can be modeled by an 8D reflectance
field [Debevec et al. 2000], which describes the mapping of radi-
ance from an incident light field to an outgoing light field. For ease
of capture and processing, most image-based relighting methods
consider only a simplified 4D reflectance field with a fixed view-
point and 2D incident illumination. The light transport matrix pro-
vides a discrete representation of this reflectance field.

2.1 Light Transport Reconstruction

Existing methods for light transport reconstruction can be classified
into three categories [Wang et al. 2009]: brute force, sparsity based,
and coherence based.

Brute force methods directly sample all the entries of the light
transport matrix from the scene. Debevec et al. [2000] designed
a light stage for capturing the reflectance field of the human face
from a fixed viewpoint and with directional lighting. Each matrix
column is measured in an image of the subject’s face illuminated by
a directional light, and the matrix is filled by uniformly sampling
the lighting directions over a hemisphere. Wenger et al. [2005]
later developed a light stage with high-speed multiplexed illumina-
tion to enable reflectance field capture of dynamic characters. The
light stage concept was also extended by Hawkins et al. [2005] into
a dual light stage where Helmholtz reciprocity is exploited to re-
verse the roles of the camera and light source. Dense sampling of
the lighting domain is obtained with this reversal, which facilitates
reflectance field capture of highly reflective objects. O’Toole et
al. [2012] presented a primal-dual coding technique that provides
control over which light paths contribute to an image. This allows
for individual elements of the light transport matrix to be measured.
Brute force sampling is limited in practice though by the need for
specialized acquisition hardware and a large number of images to
be captured.

Sparsity based methods model light transport using a sparse
representation that is recovered from images of the scene lit with
designed illumination patterns. Several methods assume the light
transport matrix itself to be sparse [Masselus et al. 2003; Sen et al.
2005] or data-sparse [Garg et al. 2006]. To accelerate acquisi-
tion, multiplexed illumination patterns are devised for capturing
multiple columns of the light transport matrix from each image.
In environment matting, the light transport of transparent, translu-
cent and glossy objects is modeled as a sparse sum of basis func-
tions, such as rectangular kernels recovered using light stripe hi-
erarchies [Zongker et al. 1999], Gaussian kernels estimated with
light stripe sweeps [Chuang et al. 2000], and a wavelet basis com-
puted using wavelet illumination patterns [Peers and Dutré 2003].
Light transport has also been reconstructed in general scenes us-
ing sparse basis representations, including hierarchical box func-
tions estimated from various natural illumination conditions [Ma-
tusik et al. 2004] and wavelets from scenes lit with wavelet noise
patterns [Peers and Dutré 2005]. Sparse basis representations of
light transport have also been recovered using compressive sensing
techniques, employed in a hierarchical manner [Peers et al. 2009]



and in a dual photography setting [Sen and Darabi 2009]. Reddy
et al. [2012] decomposed the light transport of a diffuse scene into
direct, near-range, and far-range components that have a sparse rep-
resentation in either the spatial or frequency domain. Each compo-
nent is then captured with corresponding optimal illumination pat-
terns.

For scenes with more complicated lighting effects, sparse represen-
tations become less adequate for modeling the corresponding light
transport matrices of greater complexity. Moreover, these methods
require specific illumination patterns defined on the 2D light do-
main for image acquisition. Our method instead exploits non-linear
local coherence to reduce image capture, and sets no particular re-
quirements on lighting. It thus does not rely on special lighting
hardware and can handle illumination with higher degrees of free-
dom.

Coherence based methods exploit the data coherence in light
transport to reconstruct the light transport matrix from a subset of
rows/columns sampled from the scene. Malzbender et al. [2001]
proposed polynomial texture maps for modeling fixed-view im-
ages of object surfaces captured under different lighting directions.
Vasilescu and Terzopoulos [2004] formulated light transport as a
high-dimensional tensor and approximated it with a low-rank mul-
tilinear model. Masselus et al. [2004] fit a multilevel B-spline to the
measured samples to obtain a smooth approximation of reflectance
functions. Fuchs et al. [2005] relit an object under novel lighting
using a linear combination of object images captured under dif-
ferent illuminations. The linear combination coefficients are com-
puted from images of a light probe placed near to the object. Later,
they presented a reconstruction scheme in which a subset of matrix
columns is adaptively captured and then images for nearby light
samples are interpolated to recover the unknown columns [Fuchs
et al. 2007]. Wang et al. [2009] used a non-linear kernel to map
the light transport matrix into a matrix of low rank and then recon-
structed it from sparsely sampled rows and columns via a gener-
alized Nystrom scheme. They used two coaxial camera/projector
pairs to capture rows and columns of the light transport matrix.
O’Toole and Kutulakos [2010] directly measured the low-rank ap-
proximation of the light transport matrix with two coaxial cam-
era/projector pairs. A sequence of illumination patterns is used to
recover the eigenvectors and eigenvalues of the light transport ma-
trix. These methods can greatly reduce the number of images re-
quired for reconstructing the light transport matrix, but they all re-
quire special devices for accurate control of lighting. For the high-
rank light transport matrix of a scene with complex high-frequency
lighting effects, hundreds or thousands of images are required for
accurate reconstruction.

Our work also takes advantage of data coherence in light transport,
but considers the coherence to be both non-linear and local. The
greater flexibility of non-linear modeling permits fewer images to
be used in reconstructing high-frequency variations among matrix
elements. In addition, by modeling locally in segments of the light
transport space that have greater coherence, we obtain more effi-
cient representations that can be reconstructed with fewer images.
With the proposed design and usage of neural networks, our method
capitalizes on the non-linear and local coherence of light transport
for reconstruction from a small set of images. Moreover, it can use
images of the scene lit with a freely moving light source as input,
thus simplifying image acquisition.

For synthetic scenes, many-lights methods [Walter et al. 2005;
Hašan et al. 2007; Ou and Pellacini 2011] approximate one-bounce
reflections of light from scene surfaces with millions of virtual
lights and then compute their contributions to the image by a mul-
tiplication of the light transport matrix and a virtual lights vector,

where each matrix element records the direct light transport from
a virtual light source to the surface point of an image pixel. Light-
cuts [Walter et al. 2005] hierarchically clusters the virtual lights
into a light tree and then selects a set of representative lights for
each pixel to render the final image. Matrix row-column sampling
[Hašan et al. 2007] assumes that the light transport matrix is low
rank and samples a sparse set of representative rows and columns
for approximating the sum of all matrix columns. LightSlice [Ou
and Pellacini 2011] groups the matrix rows into several low-rank
submatrices and then applies a row-column sampling scheme to ap-
proximate the sum of each submatrix. Different from these methods
that exploit local or global linear coherence for reconstructing the
light transport of one-bounce indirect lighting, our method models
the full lighting effects of light transport in a scene by exploiting
the nonlinear coherence of local light transport segments.

2.2 Light Transport Compression

Several methods have been presented for compressing full light
transport matrices captured from real-world scenes or precom-
puted from synthetic scenes. Precomputed radiance transfer meth-
ods [Sloan et al. 2002; Ramamoorthi 2009] project the light trans-
port data onto a set of basis functions (e.g., spherical harmon-
ics [Sloan et al. 2002], wavelets [Ng et al. 2003], or spherical radial
basis functions [Tsai and Shih 2006]) and then compress the coeffi-
cients with clustered PCA [Sloan et al. 2003] or other data compres-
sion schemes [Tsai and Shih 2006]. Nowrouzezahrai et al. [2009]
use neural networks for approximating low-frequency precomputed
visibility data of dynamic objects and rendering low-frequency self-
shadowing in a dynamic scene. All of these methods assume the
entire light transport matrix to be known, and exploit coherence for
compression. On the contrary, our method takes a small subset of
the light transport data and infers the rest of the matrix entries based
on the non-linear coherence revealed in the images.

Recently, Ren et al. [2013] proposed radiance regression functions
(RRF) based on neural networks for rendering the indirect light
transport of a synthetic scene. To model the indirect transport, they
augmented the RRF input with surface normal and material prop-
erties, partitioned the input space, and constructed an RRF for each
subdivision. In contrast to the RRF method which employs neu-
ral networks as a compact representation of densely-sampled light
transport data, our method uses neural networks in an inverse man-
ner to predict the light transport of unobserved lighting conditions
from a small number of image samples. The demonstrated abil-
ity of neural networks to model light transport as shown by Ren et
al. [2013] suggests potential in using neural networks as an instru-
ment for light transport inference.

Mahajan et al. [2007] theoretically analyzed the relationship be-
tween the dimensionality of local light transport and the underly-
ing image region size, and derived optimal parameters for clustered
PCA. Since our method uses non-linear neural network ensembles
to model light transport, their analysis cannot directly be applied in
our partitioning of the light transport space. We instead empirically
analyze the relationship between the node count of neural networks
and the region size. Based on this analysis, we infer an optimal neu-
ral network structure for recovering the light transport matrix from
a minimal number of images.

3 Neural Networks for Light Transport

In this section, we describe how to formulate the light transport ma-
trix as discrete samples of a continuous light transport function, and
then show how we approximate the transport function using neural
networks. Without loss of generality, we consider light transport
for a fixed viewpoint and with point light sources that lie on a 2D



Figure 2: Left: Structure of the acyclic feed-forward neural net-
work used in modeling a light transport function. An input vector
(p, l) is mapped to an output of RGB values in the light transport
matrix M. Right: Examples of activation functions with different
weight values.

plane. Our solution can be directly extended to handle other light
transport configurations.

Light transport function The light transport matrix represents
the proportion of radiance from each light source that reaches each
image pixel. Given a real-world scene, we model the light transport
matrix as discrete samples of a continuous light transport function
Ψ(p, l):

M(i, j) = Ψ(p(i), l( j)), (2)

where M(i, j) is an element in the light transport matrix that cor-
responds to pixel i and light source j, p(i) denotes the image co-
ordinates of pixel i, and l( j) is the position of light source j in the
2D light domain. By expressing the 2D light transport matrix as a
continuous 4D light transport function, the coherence of light trans-
port in both the image domain and light domain can be more readily
exploited.

Neural network approximation We approximate the light trans-
port function with multilayer acyclic feed-forward neural networks.
As a universal function approximator, a neural network can fit any
function with arbitrary accuracy given adequate network size and
training data. As shown in Figure 2, a multilayer acyclic feed-
forward neural network can be illustrated as a weighted and directed
graph with layers of nodes. The first layer is the input layer, which
consists of nodes representing each element of the input vector (p, l)
of the light transport function. The final layer, called the output
layer, consists of three nodes whose outputs are taken as the RGB
components of light transport matrix element M(i, j). The layers
in-between are referred to as two hidden layers, which transform
the input into values useful to the output layer. At the j-th node in
the i-th layer, the node output ni

j is computed from a weighed sum
zi

j of the outputs from the preceding (i−1)-th layer:

ni
j = σ(zi

j), zi
j = wi

j0 + ∑
k>0

wi
jk ni−1

k , (3)

where ni−1
k is the output of the k-th node in the (i− 1)-th layer,

w jk is the weight of the edge from node k to node j, and w j0 is
a bias value. The weighted sum is transformed by an activation
function σ to obtain the node output. The activation function we
use here is a hyperbolic tangent function σ(z) = 2/(1+ e−2z)−1,
which can model both smooth functions and step functions with
sharp changes as shown in Figure 2. With this model, the output of
a neural network can be determined by the input vector (p, l) and
the weights w of all the nodes. Thus we can approximate the light
transport function Ψ(p, l) by a neural network function Φ(p, l,w).
Please refer to Section 6 for neural network design details.

Augmentation of neural network input Figure 3 illustrates 2D
slices of 4D light transport functions approximated by neural net-
works with two hidden layers. Each slice image corresponds to

Figure 3: 2D slices of 4D light transport functions approximated
by neural networks. The first column shows the scene and cap-
ture configuration. A neural network can accurately represent high-
frequency variations in light transport functions with glossy reflec-
tions as in (a) and hard shadows as in (b). However, it poorly
models the rich material variations in (c). With the help of aver-
age color, light transport with rich material variations can be well
reconstructed as in (d).

light transport between a 1D light sample and a 1D image scanline.
It is shown that a neural network can accurately represent high-
frequency variations such as those caused by hard shadows in a light
transport function. However, this neural network cannot effectively
model the more complex light transport of a scene with rich mate-
rial variations. On synthetic data, Ren et al. [2013] demonstrated
that by augmenting the neural network inputs with the geometry
and material properties of surface points, the neural network can
much more accurately model the complex light transport of such
scenes.

In our case, since the geometry and material information of the
scene are unknown, we augment the neural network input with the
average color value f of pixel p in the captured images, which re-
sults in the neural network function Φ(p, l, fp,w). The average color
of a pixel over all the captured images provides an indication of its
similarity to other pixels in material and geometric properties, as
discussed in Appendix A. This information can aid a neural net-
work in modeling the light transport of scenes with rich material
variations, as shown in Figure 3(d).

4 Light Transport Reconstruction

To reconstruct the light transport matrix, we recover the light trans-
port function through neural network regression on captured im-
ages. In this regression, we solve for the weight vector w of the
neural network such that it best approximates the images. This is
non-trivial task because the optimization is highly non-linear with
many local minima. Although increasing the number of acquired
images can help to avoid a suboptimal result or overfitting, this
would run counter to the goal of simplifying data capture.

To deal with this issue, we model light transport functions with neu-
ral network ensembles [Hansen and Salamon 1990]. A neural net-
work ensemble ΦE is composed of several base neural networks,
each of which is independently trained from a different subset of
the captured images. A light transport matrix element is then ap-



proximated by averaging the outputs of all the base neural networks
Φn:

ΦE(p, l, fp) =
1

Ne

Ne

∑
n=1

Φn(p, l, fp,wn), (4)

where Ne is the number of base neural networks in the ensemble,
and wn is the weight vector of base neural network Φn. By deter-
mining the output collectively from multiple neural networks that
have been separately trained, the effect of local optima is reduced
in a statistical manner. Note that when considering the fuzzy adap-
tive clustering in Section 5, the set of ensembles can be different for
pixels in different clusters. For simplicity, we will assume in this
section that the neural networks are trained with all the pixels of the
scene.

Given a set of images I1 . . .INm captured from the scene with Nm
different lighting conditions L1 . . .LNm , we generate each base neu-
ral network Φn in the ensemble by computing weight vectors wn
that minimize the following error function:

E(wn) =
Nm

∑
m=1
||Im−MnLm||2 (5)

where m is an index of the Nm measurements, and Mn is the light
transport matrix modeled by base neural network Φn:

Mn(i, j) = Φn(p(i), l( j), fp(i),wn). (6)

The distance between a measured image and a reconstructed image
is computed as a sum of L2 distances between all pairs of pixel
colors.

The weight vector wn is initialized using the Nguyen and
Widrow [1990] method, which normalizes a randomly initialized
weight vector to guarantee that each node will be active for at least
part of the training data. After initialization, we solve for the weight
vector using the Levenberg-Marquardt (LM) algorithm [Hagan and
Menhaj 1994], which performs well on the small-scale neural net-
works used in our network ensembles. In each step of the opti-
mization, we determine the Hessian and gradient by computing the
Jacobian matrix of E(wn) with respect to wn using the standard
back-propagation scheme [Hinton 1989]. The training is performed
in batch mode, where all the given training data is used at each iter-
ation. To avoid overfitting, we randomly select 70% of the captured
images as training images and leave the remaining 30% for cross-
validation [Beale et al. 2012]. This random selection of training
data can also be used to generate different base neural networks in
the network ensemble.

After regression, we can reconstruct the light transport matrix from
the resulting base neural networks in the ensemble:

M(i, j) =
1

Ne

Ne

∑
n=1

Φn(p(i), l( j), fp(i),wn). (7)

5 Adaptive Fuzzy Clustering

A neural network ensemble can accurately represent the coherent
light transport in a local region of the light transport space. But
as light transport decreases in coherence more globally, it becomes
more difficult to model effectively with a single neural network en-
semble. We therefore partition the light transport space into coher-
ent segments and regress a neural network ensemble for each of
them. Since light transport generally exhibits less coherence in im-
age space than in lighting space, we partition the light transport in
only the image domain.

Figure 4: Fuzzy clustering, illustrated for three base neural net-
works (Ne = 3). For a pixel x, its input image values are used in
training the neural networks for the nearest three clusters, C1, C2
and C3. The resulting three neural networks are used as a neural
network ensemble for determining the value of pixel x.

A straightforward partitioning method is to divide the image space
evenly into uniform regions. However, this solution ignores the co-
herence between pixels across region boundaries, which may lead
to artifacts in the reconstructed light transport. Also, it would be in-
efficient to divide a large region with coherent light transport varia-
tions, as this would lead to a redundant representation.

To address these issues, we develop a fuzzy clustering scheme for
image space partitioning. As shown in Figure 4, our method as-
signs each pixel to several clusters whose centers are nearest to the
current pixel, with the distance measured in terms of pixel posi-
tion1. Since neighboring clusters will thus have overlapping image
regions, they share training data from within the overlaps, leading
to smooth transitions in light transport between clusters. Moreover,
since the light transport of each pixel is to be modeled by the neural
network ensembles of several neighboring clusters, we can instead
train a single neural network for each cluster and use the set of neu-
ral networks from all the clusters that the pixel belongs to to form
its neural network ensemble. The fuzzy clustering is performed in
an adaptive, hierarchical manner that allows for differently-sized
regions to emerge. Starting with clusters at a coarse level, they are
refined into smaller clusters only if their light transport cannot be
accurately reconstructed with the existing neural network ensem-
bles.

In the remainder of this section, we first present the basics of our
fuzzy clustering method and then describe the details of our adap-
tive fuzzy clustering scheme.

Fuzzy clustering We cluster all pixels defined in the image plane
according to their 2D image-space distances. Given the number of
clusters Nc, we uniformly sample Nc pixels in the image plane as
initial cluster centers and then group all the pixels via standard k-
means clustering. The number of clusters is determined adaptively
as described later. After the centers of the final clusters are deter-
mined, we assign each pixel to the Ne nearest clusters according to
its distance to the cluster centers and train a single neural network
for each cluster.

Adaptive fuzzy clustering To partition the image space adap-
tively according to its light transport variations, we first cluster all
the pixels at Nh different levels (Nh = 4 in our implementation). The
finest level H0 contains a maximal number of clusters Nc

0, while
each higher level h contains a quarter as many clusters as in level
h−1, i.e., Nc

h = Nc
h−1/4.

The maximal number of clusters Nc
0 is determined such that each

cluster would contain enough pixels for neural network training.

1We found that the pixel’s appearance has little effect on our clustering
results, so it is not included in the distance computation.



input : Nh levels of clusters from finest level 0 to coarsest
level Nh−1;
error threshold ε = 0.03.

output: Clustering level h(p) and cluster IDs c(p) for each
pixel p;
Trained neural networks Φ(i,h) for cluster i at level h.

initialization: h(p) := Nh−1, c(p) := nearest Ne clusters in
level h(p);
for all pixels p do

// train one neural network with all the data in each cluster
Train Φ(c(p),h(p));
Measure training error E(p) ;

while E(p)
||I(p)||2 > ε and h(p)> 0 do

h(p) := h(p)−1;
c(p) := nearest Ne clusters in level h(p);
// train a neural network with all the data in each
cluster, if the cluster contains one or more flagged
pixels.
Train Φ(c(p),h(p));
Update training error Ep;

Algorithm 1: Adaptive clustering scheme

As later explained in Section 6, the minimal number of pixels Nt
required for training is calculated as Nt =

25Nw
Nm

, where Nw is the
number of neural network weights and Nm is the number of cap-
tured images (i.e., the number of samples in the light domain). The
maximal number of clusters Nc

0 is then computed from Nt and the
total number of image pixels Np as Nc

0 = bNp
Nt
c.

After computing the fuzzy clusters at each level, we determine the
level at which each pixel should be modeled. We start by training
neural networks for all the clusters at the coarsest level. Then we
compute the training error E(pi) of each pixel pi as the squared
difference between the values predicted by the light transport of its
neural network ensemble and the true values I(pi) in the captured
images:

E(pi) =
Nm

∑
m=1
||Im(pi)−M(i, ·)Lm||2, (8)

where M(i, ·) is the row vector of the light transport matrix that cor-
responds to pixel pi. Pixels whose relative training error E(pi)

||I(pi)||2 is
smaller than a threshold (0.03 in our implementation) are assigned
to this level, while the others are flagged as having a poorly ap-
proximated light transport. These flagged pixels are then evaluated
again at the next finer level of the hierarchy. At the next level, neu-
ral networks are trained for the clusters that contain flagged pixels.
We repeat this process until no flagged pixels remain or the algo-
rithm reaches the finest level. Algorithm 1 summarizes this adaptive
fuzzy clustering scheme. We note that for each cluster, we train its
neural network with the captured image values of all of its pixels re-
gardless of whether a pixel is flagged, in order to ensure a sufficient
number of samples for neural network training.

After adaptive clustering, we find for each pixel the Ne clusters
nearest to it at its assigned level h. The neural networks of these
Ne clusters are taken as the base neural networks for light transport
reconstruction at this pixel.

Through this hierarchical processing, our adaptive fuzzy clustering
method identifies for each pixel a clustering level with sufficient
local coherence to accurately model its light transport. By sharing
neural network ensembles with neighboring pixels, the coherence
within the light transport is well preserved. In addition, this method

 (a)                                    (b)                                    (c) 

Figure 5: Fuzzy vs. non-fuzzy clustering. (a) Ground truth. (b)
Result from our adaptive method but with hard clustering (i.e., Ne =
1). (c) Result from our adaptive fuzzy clustering scheme, with Ne =
5.

does not require training a neural network ensemble for each clus-
ter. The total number of neural networks used for light transport
reconstruction increases with the number of clusters but is inde-
pendent of the number of base neural networks in an ensemble.
Figure 5(c) illustrates relighting results generated by our adaptive
fuzzy clustering scheme.

6 Design of Neural Network Ensembles

In the previous two sections, we described the adaptive fuzzy clus-
tering scheme and the neural network regression method for light
transport reconstruction. What remains to be presented is the struc-
ture of the base neural networks and the number of base neural
networks in an ensemble. Since the aim of this work is to simplify
image acquisition, we design them so that light transport can be
reconstructed from a minimal number of images.

Design of Base Neural Networks For the acyclic feed-forward
neural network described in Section 2, we utilize two hidden layers
that have an equal number of nodes, as this configuration has been
shown to be effective for light transport modeling [Ren et al. 2013].
What we seek to determine here is the number of nodes in each
hidden layer. Since a neural network with more nodes provides
greater representational power but requires more training data, a
proper balance between these two considerations needs to be found.

To determine the number of nodes Nn that we will use in each hid-
den layer, we solve for the value of Nn that minimizes the number of
required training images T(Nn)

R(Nn)
, where T(Nn) is the number of sam-

ples needed to train a base neural network with Nn nodes in each
hidden layer, and R(Nn) is the cluster size (i.e., number of pixels
per cluster) that can be modeled by a base neural network with Nn
nodes in each hidden layer.

Previous analysis [Turmon and Fine 1995] indicates that the num-
ber of samples T required to train a neural network is proportional
to the number of neural network weights Nw. For our base neu-
ral networks with seven nodes in the input layer and three nodes
in the output layer, the number of weights can be calculated as
Nw = 7Nn +Nn +Nn

2 +Nn + 3Nn + 3, so the number of samples
needed in our case is

T(Nn) = ρNw = ρ(12Nn +Nn
2 +3), (9)

where ρ is a constant scale factor. In Figure 6(d) we show a plot of
T(Nn), which increases quadratically with the number of nodes Nn.

The function R(Nn) is more challenging to analyze since it depends
on scene properties and our clustering scheme in addition to neu-
ral network structure. We determine it empirically by examining
how cluster sizes change when using neural networks with different
numbers of nodes. This analysis is conducted on three representa-
tive light transport datasets with different kinds of lighting effects:
the Plant dataset from a synthetic scene with high frequency shad-
ows (Figure 6(a)), the Glass dataset captured from a real scene with



Figure 6: Effects of different node numbers Nn. (a-c) Scenes with
various lighting effects that are used for analysis. (d) Number of
needed training samples T(Nn). (e) Cluster size R(Nn). (f) Number
of required training images T(Nn)

R(Nn)
. (g) Required training images

with respect to different ensemble sizes.

complex caustics (Figure 6(b)), and the General dataset sampled
from another real scene with a mixture of different lighting effects
(Figure 6(c)). For efficient experimentation, we select light trans-
port data defined in an image region (enclosed by blue boxes) that
covers the major lighting effects of the scene, and resample the data
to a 256×256 image resolution. After that, we execute our cluster-
ing and regression scheme on each dataset with different Nn settings
for base neural networks. For each Nn sampled from 10 to 40, we
set Ne = 1 and use the full light transport matrix as training data for
regression. The total number of clusters Nc used for light transport
reconstruction is recorded, and we compute the average number of
pixels in the resulting clusters by

R(Nn) =
2562

Nc
, (10)

where 2562 is the resolution of the light transport datasets. In Fig-
ure 6(e), R(Nn) is plotted for each of the three datasets and is shown
to exhibit consistent behavior, with R(Nn) increasing sub-linearly
with the number of nodes Nn.

With this analysis of R(Nn) and T(Nn), we can compute the number
of required training images for different Nn settings as T(Nn)

R(Nn)
. We

plot this function in Figure 6(f) for the three light transport datasets.
Though the datasets contain different kinds of lighting effects, the
number of required training images is approximately minimized at
Nn = 15 and gradually increases for larger Nn. Here, we generated
the plots with ρ = 25, but the location of the minima is indepen-
dent of this scale factor. Based on this analysis, we use 15 nodes
per hidden layer in our base neural networks. We also considered
using different numbers of nodes for the two hidden layers, but we
empirically found that this does not reduce the number of required
images.

Ensemble Size Optimization After designing the base neural
network structure, we optimize the ensemble size to further reduce
the number of images required for training. To this end, we again
use the three light transport datasets of Figure 6(a-c) to empirically
determine the minimal number of images needed for training neural
network ensembles with different numbers of base neural networks.
For each ensemble size Ne, we compute clusters and train neural
network ensembles starting with the full light transport data. Then
we iteratively reduce the number of input images in the training data

Scene
Image

Resolution
Light

Resolution
Data from

Glass 1752x1168 34x34 [Wang et al. 2009]
General 1752x1168 34x34 [Wang et al. 2009]
Waldorf 696x464 32x32 [O’Toole and Kutulakos 2010]
Bull 696x464 32x32 [O’Toole and Kutulakos 2010]

Table 1: Properties of four light transport datasets used for valida-
tion.

and find the minimal number of images at which the relative train-
ing error of each pixel remains smaller than a pre-defined threshold
(0.03 in our implementation). Figure 6(g) displays how the number
of images required for training decreases as the ensemble size in-
creases for the three light transport datasets. Note that for all three
datasets, the number of images required for training becomes stable
after the ensemble size becomes larger than 3. However, we found
that the resulting light transport exhibits some visual artifacts when
the ensemble size is smaller than 5. Therefore, we set the number
of base neural networks to Ne = 5 in our implementation.

Once the values of Nn and Ne are determined, we use this neural
network configuration for reconstructing the light transport of all
scenes described in the paper.

7 Validation

We validate our method using four light transport matrices acquired
in previous works [Wang et al. 2009; O’Toole and Kutulakos 2010;
Ren et al. 2013]. This data consists of various lighting effects, in-
cluding caustics, specular inter-reflections, hard shadows, and low-
frequency diffuse inter-reflections. The datasets are all captured
with a fixed viewpoint and with lighting densely sampled over a
uniform 2D grid. Table 1 lists the properties of the four data sets.

For each dataset, we randomly select a sparse set of columns as in-
put images and then reconstruct the full light transport matrix with
our clustering and training scheme. For comparison, we also re-
construct the light transport matrix with the same number of in-
put images using the kernel Nystrom [Wang et al. 2009], optical
Arnoldi [O’Toole and Kutulakos 2010], and radiance regression
function (RRF) [Ren et al. 2013] methods. Since the kernel Nys-
trom method requires sampling both rows and columns of the light
transport matrix, we randomly select N/2 rows and N/2 columns
as the N input images. For the optical Arnoldi method, we use N/4
optical Arnoldi iterations for reconstruction since each iteration re-
quires four images. The relative reconstruction error is computed
as

ε =

√
∑ j ||I j− Ĩ j||2

∑ j ||I j||2
, (11)

where I j is the image of the ground truth light transport matrix col-
umn M(·, j), and Ĩ j is the reconstructed one.

In Figure 7, the reconstruction error curves of the three methods
are plotted with respect to the number of captured images. The re-
sults are shown for each dataset. As the number of input images
increases, the reconstruction errors of all the methods are quickly
reduced. With the same number of input images, our method pro-
vides reconstructions with less reconstruction error. Figure 7 shows
a comparison of the ground truth image and images reconstructed
by the four methods for a matrix column that is not among the input
images. The number of input images used for each dataset is indi-
cated by the vertical yellow line in the error plots of Figure 7. While
the result generated by our method looks almost indistinguishable
from the ground truth, the results generated by the other methods
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Figure 7: Comparisons of light transport matrix reconstruction. Left to right columns: General, Glass, Waldorf, and Bull scenes. The first
row shows the relative reconstruction errors for different numbers of input images. Red: our method; Green: Radiance Regression Functions
(RRF) method; blue: kernel Nystrom method; and black: optical Arnoldi method. The second row shows ground truth images of a light
transport matrix column that is not in the input image set. The last four rows are images of the same matrix column reconstructed using the
kernel Nystrom method, the optical Arnoldi method, the RRF method, and our method, respectively, where the number of input images used
for reconstruction is 100 for the General scene, 200 for the Glass scene, 260 for the Waldorf scene, and 900 for the Bull scene.

exhibit visual artifacts. To achieve relative reconstruction errors
similar to ours, the kernel Nystrom, optical Arnoldi, and radiance
regression function methods need considerably more images than
our method does, as shown in the supplemental material.

To examine the sensitivity of our method to different input images,
neural network initializations, and clustering initializations, we re-
peated our reconstruction five times, each time with different input
images randomly selected from the light transport data and with

randomly initialized neural networks and clusters. The relative re-
construction errors and their variances are plotted in Figure 8 for
different numbers of input images. As the number of input images
increases, both the reconstruction error and its variance decreases
quickly.

We also note that the Waldorf and Bull scenes contain significant
noise due to low-dynamic range image acquisition. Although the
reconstruction error of our method may increase with higher levels



Figure 8: Relative reconstruction errors and their variance for our
method with different training samples and initializations. The yel-
low line indicates the number of images needed to reconstruct the
light transport matrix with a predefined reconstruction error thresh-
old of 0.03.

of noise, it is seen for these two examples in Figure 7 that the error
levels are still relatively low for a small number of input images.

8 Experimental Results

In this section, we demonstrate the ability of our method to model
high-frequency light transport and use input images with easily pro-
duced lighting conditions. The three scenes shown in Figure 10 are
used for this experiment. The Toolset scene includes sharp specu-
lar reflections and glossy interreflections. The Horse scene consists
of sharp specular reflections and caustics, and the Indoor scene ex-
hibits hard shadows and sharp caustics.

(a)                                    (b) 

Figure 9: Imaging setup. (a) For a three-dimensional light domain.
(b) For a two-dimensional light domain.

Image Acquisition The three datasets are captured from a fixed
viewpoint with a Canon 5D Mark II camera. The light sources are
moved freely by hand. Figure 9 displays the imaging setup. To
recover the light source position, we placed three light probes near
the target scene and compute the light source position using the
method of Nayar [1989]. To constrain light movement to a 2D
plane, we placed a glass panel above the scene and kept the light
source in contact with the glass. At each light source position, we
captured a set of RAW images for construction of a high dynamic
range image. For the Toolset scene, we captured 200 images with a
point light source moved freely by hand on the 2D glass panel. For
the Horse scene, we illuminated the scene with a linear light source
composed of 12 LEDs that was also manually moved on the glass

panel. A total of 300 images were taken for reconstructing light
transport between image pixels and point light sources that lie on
the same 2D plane. For the Indoor scene, we captured 400 images
with a point light source moved by hand inside a 3D volume. The
acquisition process for each scene took about ten minutes.

Performance We reconstructed the full light transport matrix
from the captured images on a PC cluster with 100 nodes, each
of which is configured with two Quadcore Intel Xeon L5420 2.50G
CPUs. Table 2 lists the performance of our reconstruction algo-
rithm for the three datasets as well as statistics on the resulting neu-
ral network ensembles used for light transport reconstruction. For
all three datasets, the clustering and neural network regression takes
about one to two hours on the cluster. Though somewhat long, this
training time comes with significant savings in acquisition effort.
Reconstructing the light transport matrix with 10242 pixels and 322

lightings from the neural network ensembles takes about 30 min-
utes on a single PC. By adapting the GPU rendering code in Ren et
al. [2013], the speed can likely be increased by at least one order of
magnitude.

To evaluate the accuracy of a reconstructed light transport matrix,
we captured a set of test images from each scene, each of which
(including the Horse scene) is lit with a point light source randomly
sampled in the light domain. The number of test images is set to
be equal to the number of training images. We computed recon-
struction errors for the three datasets according to Equation 11, and
list them in Table 2. Figure 10 compares images captured from
the real scenes with images rendered from the reconstructed light
transport matrix with the same light source position. It can be seen
that our method effectively reconstructs the light transport matrix
of the scenes and accurately reproduces all of the high-frequency
lighting effects. Moreover, this experiment demonstrates the high-
quality reconstructions that are obtained even with simple handheld
lighting.

Figure 11 compares our method with simple linear interpolation
method. Note that the light transport generated by our method faith-
fully reproduces the image of the scene under new lighting, while
the result generated by linear interpolation illustrates clear ghosting
artifacts.

Scene
Number

of Images
Image

Resolution
Cluster
Number

Model
Storage

Training
Time

Error

Toolset 200 1047×776 4617 32MB 1.6h 3.8%
Horse 300 972×709 3896 29MB 1.0h 3.9%
Indoor 400 874×636 2927 23MB 0.8h 2.1%

Table 2: Properties of the three light transport datasets, and statis-
tics of our reconstruction algorithm on the three datasets. Number
of images represents how many images are used in light transport
reconstruction. Cluster number shows the total number of clusters
in the trained model. Model storage represents the storage size
for neural network weights, pixel IDs for each cluster, and aver-
age color values used as neural network input. Training time is
for adaptive fuzzy clustering and neural network regression on a
PC cluster. Error is the reconstruction error of the light transport
matrix computed from a set of test images.

Relighting Results After the light transport matrix of a scene
is reconstructed, we can relight the scene with new illumination
conditions. Figure 12 (first row) illustrates image-based relighting
results of the Toolset scene rendered with three rotating point light
sources. The sharp anisotropic highlights, hard shadows and glossy
inter-reflections in the scene are faithfully reproduced by our recon-
structed light transport matrix.



(a)

(b) 

(c) 

Figure 10: Reconstruction results for the three light transport
datasets. The first column shows ground truth images captured of
real scenes. The second column shows images rendered from the re-
constructed light transport matrix with the same point light source
position as in the ground truth. The third column shows error maps
amplified by 5×. (a) Toolset scene. (b) Horse scene. (c) Indoor
scene.

Figure 11: Comparison between our method and simple interpola-
tion. (a-c) Three input images lit with light sources at l1, l2, and l3,
respectively. (d) Ground truth image for light at a new position lx.
(e) Result rendered by linearly interpolating the three nearby inputs
shown in (a-c). (f) Result generated by our method. The training set
contains no image illuminated by a light inside the triangle formed
by l1, l2, and l3.

In Figure 12 (second row), we relight the Horse scene with three
rotating point light sources. The fine-scale changes in the cloth
highlights and the volumetric scattering of the horse model are well
reproduced.

Relighting in a 3D light domain is especially challenging because of
the more dramatic changes in lighting effects. In Figure 12 (third
row), we show relighting results of the Indoor scene illuminated
with a point light source that is moved in the 3D light domain. The
positions of the light source used for rendering are different from
those of the input images used for reconstruction. Computed from
400 input images, the reconstructed light transport matrix captures
both sharp shadows and caustics, as well as the low-frequency inter-
reflections of the scene. Please see the accompanying video for
relighting results of the three scenes under dynamic illumination.

Limitations Though our method exploits local coherence to re-
cover light transport variations, this may not be enough in some

(e)                                                     (f) 

(c)                                                     (d) 

(a)                                           (b) 

Figure 13: Failure case. (a) Real photo. (b) Reconstructed image
with missing caustic details that were not present in the training
images and not recovered from local coherence.

cases to recover subtle lighting effects that are not present in the
training images. Figure 13 illustrates one example, where the caus-
tic details are lost in the relighting result rendered using our recon-
structed light transport matrix. To avoid losing such details, our
method may need hundreds of images for training, as shown for the
three scenes with high-frequency lighting effects in Figure 10. To
faithfully reconstruct the light transport matrix of a scene, our tech-
nique also requires the light samples of the training images to be
well-distributed over the light domain, since it may not adequately
extrapolate beyond the convex hull of the sampled light positions.
Although the neural network configuration derived from the three
datasets works well for all the scenes described in the paper, it may
not be as effective in modeling the light transport of a scene with
different lighting effects. Fortunately, we can derive a suitable neu-
ral network configuration by simply performing the analysis of Sec-
tion 6 with the new light transport data included.

9 Conclusion
We presented a neural network based regression method for image
based relighting. Our method exploits the non-linear coherence of
light transport in local image regions and models the light transport
with neural network ensembles built within an adaptive fuzzy clus-
tering framework. We studied the relationship between the number
of neural network nodes and the size of image region that it can
model, and use this analysis in designing a neural network struc-
ture that can can be used to capture the light transport matrix from
a small number of input images. Compared to other light transport
acquisition methods, ours requires fewer input images for the same
level of reconstruction quality, and does not need special lighting
devices.

We believe that our method makes relighting much more accessible
to practitioners, as it can utilize simple lighting conditions (such
as manually moved point or linear light sources) and requires rela-
tively few images. Moreover, it can easily support 3D light domains
(as shown with the Indoor scene) without the specialized light con-
trol devices or substantial image data needed in previous methods.
An important yet challenging future direction is to avoid training
for each new scene by using a learned dictionary of NNs, where
each NN models the reflectance field of a small patch as in Marwah
et al. [2013]. We also hope that our analysis of model parameters
and light transport complexity will encourage further study of other
regression models to better understand what kind of representations
are most suitable for light transport.
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Figure 12: Relighting results. First row: Toolset scene. Second row: Horse scene. Third row: Indoor scene. The three results of each scene
are rendered with a point light source at different positions.
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Appendix A: Average Pixel Color as a Neural
Network Input

Although the light transport matrix can model arbitrary lighting ef-
fects, we consider here for simplicity an opaque surface to show that
the average pixel color is highly related to surface appearance and
normal direction, while being less related to lighting conditions.

Given a surface point at pixel i with BRDF ρ , its average color Ī(i)
over all the sampled lighting positions j0...Nm can be written as a
integration of the BRDF and the averaged incident radiance L(i,v)
over the upper hemisphere Ω defined by normal n:

Ī(i) =
1

Nm
∑

0≤m≤Nm

∫
Ω(n(i))

ρ(i,v)(n ·v)L(i, jm,v)dv

=
∫

Ω(n(i))
ρ(i,v)(n ·v) 1

Nm
∑

0≤m≤Nm

L(i, jm,v)dv

=
∫

Ω(n(i))
ρ(i,v)(n ·v)L̄(i,v)dv. (12)

By decomposing the BRDF into a diffuse component with coeffi-
cient kd and a specular component with coefficient ks and specular
BRDF ρs, the average color can be rewritten as:

Ī(i) = kd(i)
∫

Ω(n(i))
(n ·v)L̄(i,v)dv

+ ks(i)
∫

Ω(n(i))
ρs(n,v)(n ·v)L̄(i,v)dv. (13)

Let us consider two neighboring pixels ia, ib. Since the two pix-
els are probably in the same spatial neighborhood, they share sim-
ilar averaged incident lighting L̄(ia,v) ≈ L̄(ib,v). Thus the differ-
ent average colors mainly result from different surface reflectance
ρ(ia),ρ(ib) or different normal directions n(ia),n(ib). Also, when



two neighboring pixels with similar reflectance and normal direc-
tions are separated by a large depth change, they will have substan-
tial differences in incident lighting. In such cases, the difference in
lighting will generally cause a difference in average color.

As seen in Equation 13, it is difficult to separate the reflectance and
normal variations in captured images by simply normalizing the
image values at each pixel with its average color. As a result, we
choose to add the average color as an input parameter of the neural
network to provide some physically-based scene information.


