
Pacific Graphics 2022
N. Umetani, E. Vouga, and C. Wojtan
(Guest Editors)

Volume 40 (2021), Number 7

Classifier Guided Temporal Supersampling for Real-time Rendering

Yu-Xiao Guo Guojun Chen Yue Dong Xin Tong

Microsoft Research Asia

Our result - full frame Input Reference TAAU DLSS NSR Ours

Figure 1: Supersampling result of our method. With a low resolution aliased sample input (1920×1080), our method can generate aliasing
free high resolution output (3840× 2160) while maintaining temporally stable between frames. Classical methods like TAAU [YLS20] fail
to reconstruct fine details in their results (see zoom-in views in the right column, odd-rows), learning based solution [XNC∗20] is slow and
exhibits temporal jittering (see temporal profiles in the right column, even-rows). Our method generates results with similar quality to DLSS
without requiring dedicated hardware and software.

Abstract

We present a learning based temporal supersampling algorithm for real-time rendering. Different from existing learning-based
approaches that adopt an end-to-end training of a ’black-box’ neural network, we design a ’white-box’ solution that first classi-
fies the pixels into different categories and then generates the supersampling result based on classification. Our key observation
is that the core problem in temporal supersampling for rendering is to distinguish the pixels that consist of occlusion, alias-
ing, or shading changes. Samples from these pixels exhibit similar temporal radiance change but require different composition
strategies to produce the correct supersampling result. Based on this observation, our method first classifies the pixels into
several classes. Based on the classification results, our method then blends the current frame with the warped last frame via a
learned weight map to get the supersampling results. We design compact neural networks for each step and develop dedicated
loss functions for pixels belonging to different classes. Compared to existing learning based methods, our classifier-based su-
persampling scheme takes less computational and memory cost for real-time supersampling and generates visually compelling
temporal supersampling results with fewer flickering artifacts. We evaluate the performance and generality of our method on
several rendered game sequences and our method can upsample the rendered frames from 1080P to 2160P in just 13.39ms on
a single Nvidia 3090GPU.

Keywords: Real-time rendering, Supersampling

1. Introduction

Temporal antialiasing and supersampling [YLS20] have been
widely used in real-time rendering for removing the temporal flick-

ering and improving the image resolution. The basic idea behind
this technique is to use the jittered temporal samples in previous
frames to approximate the spatial samples in the current frame for
antialiasing and supersampling. However, the shading variations
and visibility changes between the frames make this task difficult.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Y. Guo et al. / Classifier Guided Supersampling

Traditional methods use hand-crafted heuristics to determine the
validity of history samples and composite history samples with cur-
rent frame ones for rendering the final results. Although these meth-
ods can achieve a high frame rate, it is difficult to avoid artifacts
such as flickering and ghosting [YLS20]. Xiao et al. [XNC∗20]
present a convolutional network for directly mapping a frame se-
quence to the current supersampled frame. It achieves good visual
quality for each frame at the cost of temporal flickering. Also, the
large computational cost of the network makes it difficult to be
applied in real-time rendering. Thomas et al. [TVLF20] design a
kernel-prediction network for temporal anti-aliasing. Without care-
fully designed loss functions, the black-box network is difficult to
achieve a good balance between the temporal stableness and visual
quality of each frame.

In this paper, we present a learning-based temporal supersam-
pling scheme for real-time rendering. Our key observation is that
the most critical task in temporal supersampling is to distinguish
between pixels that have large shading variations or visibility
changes and the pixels that cover high frequency content and are
thus insufficiently sampled. Both kinds of pixels exhibit similar ra-
diance changes between frames but need to be handled in a totally
different way. For the first class of pixels, their historical values
make little contribution to the current frame. While for the latter,
their historical samples should be accumulated to resolve the alias-
ing in the current frame. Without carefully processing these pix-
els, the supersampling result will exhibit "ghosting" artifacts for
the first class of pixels and temporal flickering for the ones of the
second. We thus name the two classes of pixels as "ghosting" and
"aliasing" respectively.

Based on this key observation, we decompose the temporal su-
persampling into two subtasks: pixel classification and image com-
position, each of which is performed by a neural network. In partic-
ular, the classification network identifies the probabilities of pixels
in the current frame belonging to "ghosting" or "aliasing" classes.
Based on the classification result, the image composition network
blends the current frame and the warped super-sampled last frame
with a predicted weight map to generate the final result. To train the
two networks, we execute the underlying real-time rendering algo-
rithm offline to render a sequence of high-resolution frames with
multiple samples per pixel and obtain the ground truth class and
color information of the pixels in each frame.

Compared to the end-to-end networks used in previous meth-
ods, our two-step solution provides a set of advantages. First, the
simplified task in each step allows us to design a compact network
for each task and thus reduces the computational and memory I/O
cost of the whole solution. Second, it enables us to design different
loss functions for pixels in different classes, which provides a good
balance between temporal stableness and per-frame image quality.
Finally, instead of taking all jittered previous frames as network in-
put, the classification network can efficiently extract statistic infor-
mation of previous frames as the network input and thus supports
long jittering sequences used in current rendering algorithms. To
this end, we carefully design the compact network for each task,
and a set of loss functions for pixels in different classes, as well as
the historical information gathered from previous frames used for

the network input. We also develop an efficient training scheme for
two networks used in our solution.

We evaluate our method with the frame sequences of different
scenes rendered by Unreal Engine and validate its efficiency and
generality. Compared to existing learning based temporal super-
resolution or antialiasing solutions, our method achieves compa-
rable per-frame image quality and better temporal stableness with
much less computational and memory I/O cost.

2. Related Work

Temporal antialiasing and supersampling is an important research
topic in 3D rendering. A large set of methods and commercial solu-
tions have been developed for this task. In this section, we discuss
works that are directly related to our method.

Spatial antialiasing exploits multiple samples per pixel to re-
move the aliasing artifacts in a single frame. To reduce the render-
ing cost of multiple samples, Multisampling antialiasing (MSAA)
[Ake93] uses multiple samples for visibility only to reduce the ren-
dering cost caused by multiple samples. For deferred shading based
rendering, morphological antialiasing (MLAA) [Res09] and sub-
pixel morphological antialiasing (SMAA) [JESG12] have been de-
veloped for spatial antialiasing. All these methods aim to improve
the image quality of a single frame at the cost of approximating
multiple samples per pixel, without considering temporal stable-
ness.

Heuristic based temporal supersampling samples the historical
frames with the help of the motion vectors for supersampling and
antialiasing of the current frame. [YNS∗09]. To avoid the artifacts
caused by the visibility and shading changes between frames, a set
of neighborhood clamping strategies [Kar14, Sal16] have been de-
veloped to correct the historical samples of a pixel based on its
neighborhood values for antialiasing and supersampling. We re-
fer the reader to a comprehensive survey [YLS20] of the heuris-
tic based methods. Concurrent to our work, FSR 2.0 [TC22] de-
sign a set of heuristics to determine visibility induced ghosting and
maintain temporal stableness on thin features. Although the speed
of these methods is high, the heuristics used in these solutions are
prone to error and thus lead to ghosting and other artifacts in the
rendered results.

Learning based temporal supersampling learns a deep neural
network for temporal supersampling or antialiasing. Chaitanya et
al. [CKS∗17] present a learning scheme for denoising offline ray
tracing results at an interactive rate. Xiao et al. [XNC∗20] design
an encoder-decoder network for temporal supersampling, which
takes multiple consecutive frames (4 in their implementation) as in-
put and directly outputs the high resolution image. Although their
method can well reconstruct high resolution images, the compu-
tational cost is high. Without carefully designed loss functions,
their method generates temporal flickering on geometry and texture
boundaries. Thomas et al. [TVLF20] introduce a kernel-prediction
network for temporal anti-aliasing, where the current frame and
warped last one are filtered by a set of kernels predicted by the
network to generate the anti-aliased results. Although this method
greatly improves computational efficiency via the quantized net-
work, the results still suffer from temporal flickering. Nvidia re-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Y. Guo et al. / Classifier Guided Supersampling

Figure 2: Our method first classifies the pixels according to the ghosting and aliasing properties. Based on the classification results, the
image composition network determines a blending weight map. The bi-cubic upsampled current frame will be blended into the warped last
supersampled frame weighted by the blending weight map. The classification results will also help generate auxiliary buffers as input for the
next frame. Please refer to the supplementary materials for implementation details of the ’upsample’ and ’update auxiliary buffers’ module.

leased Deep Learning Super Sampling (DLSS) [Liu20] for real
time supersampling and can be easily integrated into existing game
engines. Although the method offers real-time performance and
good super-sampling results, it requires proprietary GPU hardware
(TensorCore) and the technical details of the method are unknown.

Learning based image and video superresolution have been ex-
tensively studied in the past several years [WCH20, AKB20]. Al-
though our method shares the similar goal with the video superres-
olution, the two tasks are different in several ways. First, the input
video superresolution is always aliasing free and low-pass filtered,
while our input is point-sampled and aliased. Second, compared to
video super-resolution that can take full GPU resources, our task
needs to share the GPU with the real time rendering algorithm and
has much less computational and memory I/O budget. Finally, dif-
ferent from captured videos that lack the accurate underlying scene
and motion information, the rendered frames have accurate motion
vectors between frames and underlying depth information of the
scene, which could be used in our task.

3. Classifier guided temporal supersampling

In this section, we first give an overview of our system (Sec. 3.1),
then discuss the design of our classification network (Sec. 3.2 and
image composition network (Sec. 3.3. Finally, we describe the tech-
nical details of the network training (Sec. 3.4).

3.1. System Overview

As shown in Figure 2, our system takes the color buffer and sev-
eral associated G-buffers from the rendering engine as the input

Current frame Warped previous frame Ghosting map Aliasing map

Rule based weight Our weight Rule based result Our result

Figure 3: Composition example. With the correct classification la-
bels, a simple rule based composition already produces reasonable
results. Our classifier guided design estimates a classification and
determines the blending weight using neural networks and pro-
duces good supersampling results.

for each frame. Specifically, the system input includes a color
frame rendered with jittered point-samples, the corresponding mo-
tion vectors and the depth buffer. All of them are rendered in the
low-resolution. The output of our system is an upsampled and an-
tialiased color image for the current frame. In our implementation,
we set the input resolution as 1920× 1080 and the output one as
3840×2160 with two times scale up. The input of our system is the
same as the commercial temporal supersampling scheme [Liu20]
and thus can be easily integrated with existing real time rendering
engines.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Y. Guo et al. / Classifier Guided Supersampling

Figure 4: The network structure of our classification and compo-
sition network. For detailed network configurations, please refer to
the supplementary material.

Given the input buffers obtained from the render engine, our sys-
tem applies two networks to get the upsampled frame. Both net-
works are recurrent networks that take both the rendered buffers
from the current frame and the warped output from the last frame
as input. However, we find that the upsampled last frame is not suf-
ficient to store historical information of multiple previous frames
for pixel classification and image upsampling. Therefore, based on
the classification results, we also keep a set of auxiliary buffers
to store the historical information of current and previous frames.
These auxiliary buffers are not only fed into the composition net-
work for generating the supersampling output but also warped to
the next frame as the input of the classification network.

To this end, the pixel classification network takes input buffers
of the current frame as well as the supersampled result and auxil-
iary buffers warped from the last frame as the input, and outputs
the pixel classification results. The high resolution auxiliary buffer
is also updated based on the classification results. After that, the
composition network takes the current frame buffers, warped last
frame, classification results and auxiliary buffers as the input to
produce a high resolution blending weight map. To generate the
supersampled image result for the current frame, we first upsam-
ple the current low resolution color frame to high resolution via
a bicubic interpolation and then blend it with the warped last su-
persampled frame according to the weight maps predicted by the
composition network. The design and workflow of our system are
summarized in Figure 2.

To train the two networks, we need to have the input frame, G-
buffer sequences, the corresponding aliasing-free high resolution
frames and the ground-truth classification labels of the high resolu-
tion frames. To generate such training data, we modify the real-time
rendering engine to render a sequence of high resolution frames
with multiple samples per pixel; both the color frame and G-buffers
are computed. With a sufficient number of samples generated for
each pixel, together with additional buffers from the rendering en-
gine, we design a scheme to automatically generate the ground truth
classification of the high resolution frames. Since the training data
generation mainly consists of existing technical components and
is not the technical contribution of our work, we put all technical
details in the supplementary material.

3.2. Classification network

Pixel class definition The goal for the classification network is
to perform two classification tasks: one for ghosting (i.e. radiance

variations between two frames) and the other for aliasing. Since
the radiance variation or high frequency contents in the pixel may
come from different sources and has different behavior, we define
three classes for each classification task.

In particular, the ghosting classifier categorizes pixels into three
classes: visibility induced radiance change; shading induced radi-
ance change and no radiance change. The visibility induced radi-
ance change means the motion vector is pointing to a different ob-
ject due to occlusion, where both the structure and the value of
the history sample are untrustworthy. The shading induced radi-
ance change indicates that the historical values of a pixel are useful
but their contributions need to be computed based on the shading
variation.

The aliasing classification also consists of three classes: pixels
with geometry boundaries (named geometry aliasing), pixels with
high frequency textures (named texture aliasing), and pixels that
have no high frequency contents (named no aliasing). Each group
requires different strategies for accumulating historical samples for
supersampling.

Note that the classification of aliasing and ghosting are two inde-
pendent tasks performed by one classification network. As a result,
each pixel has both aliasing and ghosting classification results and
the two classification results are not in conflict with each other.

Network input and output Both the ghosting and aliasing proba-
bility is estimated with the same network and the classification re-
sults are encoded as two 3-channel vectors indicating 3 categories
for each ghosting and aliasing condition.

Similar to previous learning based supersampling methods
[Liu20, XNC∗20] we take the current rendered frame, previous su-
persampled frame as well as the depth buffer and motion vector as
input. Specifically, we directly use the reversed-depth provided by
the game engine as the depth input.

All the input frames of the classification network are high resolu-
tion frames. The low resolution rendered frame, motion vector and
depth buffer are upsampled first to align with the input resolution.
Similar to other temporal supersampling methods like TAAU, the
motion vector is dilated by one pixel based on depth [YLS20].

Besides the input buffers rendered from the current frame, a set
of auxiliary buffers that store the statistical information of histori-
cal samples warped to each pixel in the current frame are also com-
puted and fed into the classification network, which includes

• counter buffer that counts the number of accumulated valid
frames, in order to determine the blending weight between the
current sample and accumulated samples. If the current pixel is
marked as visibility induced ghosting, its counter buffer resets to
0. Otherwise, its counter is increased by 1. When feeding to the
network as input, the reciprocal of the counter will be used.

• history color range buffer that accumulates the color variation
of one surface point over time. The minimal and maximal color
values are stored for each color channel. Such multiple frame
statistics are crucial for separating aliasing and shading changes.
For a new frame, the history color bounding box is first warped to
the current frame; the bounding box is then expanded to include

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Y. Guo et al. / Classifier Guided Supersampling

the current frame sample. If the pixel is marked as visibility in-
duced ghosting, the color range buffer will also be reset, with the
bounding box set as the current pixel color value.

• depth difference buffer that indicates the visibility changes by
comparing the depth of the current pixel and the depth of the
warped previous pixel in the same time frame. To compute the
depth difference, we first get the reprojected depth by following
the method in [TC22] and then compute the difference between
the current frame depth and the reprojected depth.

• classification logit buffer that stores the logits of the last frame
derived by the classification network before thresholding to get
the classification labels.

The impact of each auxiliary buffer on the classification is dis-
cussed in Sec. 4.2. Please refer to the supplementary material for
more details about the auxiliary buffer computation.

Network structure The classification network consists of an en-
coder and decoder, as shown in Figure 4. The input buffers are first
downsampled to half resolution by SpaceToDepth [RF17]; then, the
encoder will extract the features in four different resolutions with
bottleneck-liked encoder blocks. The feature maps from multiple
resolutions will be fed to a single decoder block and output the
classification logit at half of the output resolution. The logits are
then bi-linear upsampled to high resolution as the final output.

3.3. Composition network

The composition network takes the same set of input as the classi-
fication network, except for the depth difference buffer. Unlike the
classification network which takes the classification logit from the
previous frame, the composition network directly uses the classifi-
cation logit estimated for the current frame. The output of the com-
position network is a high resolution blending weight map. The
bi-cubic interpolated current color frame and the warped last su-
persampled frame are composed into the final supersampling result
based on the blending weight.

Since the classification logit and other auxiliary buffers already
encode sufficient information for determining the blending weight
the composition network can be very light weight. In practice,
as shown in Figure 4, we use a pixel-wise MLP with two full-
connected layers for the composition network, and output a [0,1]
blending weight map using the Sigmoid activation.

3.4. Network Training

Training Loss The classification network is trained with the regu-
lar cross-entropy loss applied on every pixel. Since there are much
fewer ghosting and aliasing pixels, we re-balance them by weight-
ing the cross-entropy loss based on the ratio of the number of la-
beled pixels among all labels among all training data.

We also have one special design for the training loss to empha-
size temporal stability for one special case. When the false posi-
tive ghosting happens in the aliasing region, the wrongly classified
ghosting label will cause significant flickering for those aliasing
pixels. In practice, we amplify the loss for this case by using the
same weights as ghosting pixels, which is much larger due to the
small number of ghosting pixels.

Based on different pixel classifications, the training loss for the
composition network is separated into three different parts:

• For geometry aliasing pixels that are correctly classified by the
classification network, we apply a L1-loss over the blending
weight directly. The blending weight should equal the recipro-
cal of the sample counter to get a temporally stable result.

• For aliasing pixels that cannot be correctly classified, or false
positive aliasing pixels, we regard them as unstable and do not
apply any loss to them.

• The blending weights for the remaining pixels are trained with
a regular L1 image reconstruction loss. The training loss is aver-
aged on each part separately and summed up as the final loss.

Training process Given the training data, the two networks are
trained separately. The classification network is trained first. We
then train the composition network with the classification network
fixed.

Since the supersampled output frame is used as an input for the
next frame, as a result, both networks are trained as recurrent net-
works [SVB18]. The output frame and auxiliary buffers of one re-
current instance are warped to the next recurrent instance as the
input. The training loss will be applied to outputs of all recurrent
instances. In practice, we train eight frames recurrently at the same
time.

The input of the classification network also depends on the com-
position network. To train the classification network without a com-
position network, we use a set of rules to determine the blending
weights and generate the supersampled frame. Specifically, we use
a 1.0 blending weight for the ghosting regions and the reciprocal
of the counter for the remaining regions for this simple rule based
blending.

Since the classification network is trained with rule based blend-
ing, when training the composition network, we will perform im-
age composition twice. The rule based composition result is used
for the classification network. The composition network uses super-
spampled results composed by the learning based blending weight.

Ideally, the classification network and composition network
should be end-to-end fine-tuned. In practice, we find that the sepa-
rately trained classification and composition networks already pro-
duce good quality results. Thus, we leave end-to-end training with
the two networks as a future work.

4. Experiment Results

We generate the training and test dataset using a modified version
of the Unreal Engine 4 [Epi20]. Cinematic sequence demos were
selected in which the exact rendering sequence can be accurately
repeated, thus we dump different samples by changing the viewport
offset and generate rendering results with controllable sub-pixel jit-
ter patterns.

In practice, we selected four demo games from the Unreal En-
gine marketplace: INFILTRATOR, SEQUENCER, ELEMENTAL and
SHOWDOWN; each represents a different rendering style. We cre-
ate our training dataset from the INFILTRATOR and ELEMENTAL

game, 6000 and 4000 training frames are selected from each game,

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Y. Guo et al. / Classifier Guided Supersampling

TAAU FSR FSR2 NSR DLSS Ours
ELE. 31.82 29.71 31.75 37.50 34.43 33.53
INF. 30.77 28.45 29.72 36.01 32.77 31.46
SEQ. 33.22 30.80 32.43 40.17 35.59 33.78
SHD. 36.01 31.03 35.96 41.15 36.45 37.60
Avg. 32.95 30.00 32.46 38.71 34.81 34.09

Table 1: We compare the spatial supersampling quality by listing
the PSNR among TAAU [Sal16], FSR [AMD21], FSR2 [TC22],
NSR [TVLF20], DLSS [Liu20] and ours on 4 test datasets.

respectively. For each game, we select one or two 120-frames clips
for testing, the test frame is not overlapped with the training frames.

We render the ground truth images and G-buffers for calculat-
ing the classification labels using a 64-spp supersampling with a
3840 × 2160 resolution. The input sequence issue captured at a
1920 × 1080 resolution with a 128 Halton jitter sequence. The
rendered linear-response HDR frames are tone mapped with the
Perceptual Quantizer EOTF [ST214] before sending as input to
our system; after the supersampling, the output image is reverted
mapped to the linearized HDR space again.

For training, we divide the full frame images into overlapped
patches with 256 × 256 output resolution and each patch has 8
continuous frames corresponding to the recurrent training config-
uration. Without proper selection, most of the patches contain few
aliasing or ghosting pixels, making them inefficient for training. As
a result, after randomly selecting 100K patches, we sort the patches
according to the ratio of ghosting and aliasing pixels it contains and
only leaves the first 25% patches used for our training.

We train our networks with TensorFlow [AAB∗15] on a server
with four Nvidia V100 GPUs. We use the Range optimizer [Wri19]
with default parameters and a learning rate of 0.0005 to train both
networks. The classification network is trained with 180 epochs and
the composition network is trained with 120 epochs, both networks
are trained with mini-batches of 24 patches.

The inference of the neural networks, image composition and
auxiliary buffer computation is implemented by HLSL compute
shaders, in our implementation all the shaders use FP32 precision
for computation and memory storage. We test the real-time super-
sampling performance on a workstation with a single 3090 GPU.
For each frame, our full pipeline takes 13.39ms, including 3.46ms
for input preparation and 9.93ms for network inference. Even with-
out further optimization like adopting reduced precision computa-
tion and memory access or leveraging dedicated machine learning
computation hardware, our network already exceeds real-time per-
formance and is capable of challenging tasks like supersampling
for a 4K frame.

4.1. Comparisons

To validate the supersampling quality and efficiency of our sys-
tem, we compare our method with state-of-the-art learning based
supersampling (NSR) [XNC∗20], DLSS [Liu20] and antialiasing
(QW-Net) [TVLF20]; we also compare with methods without rely-

NSR QW-Net Ours
Computation cost (GFLOPS) 2874.904 309.966 71.435

Memory throughput (GB) 27.513 6.860 4.064

Table 2: The network computation cost (measured by GFLOPS)
and memory throughput (measured by Gigabytes) comparison
among NSR [XNC∗20], QW-Net [TVLF20] and our method. The
metric of ours and NSR is measured for the 1080P to 2160P su-
persampling task, the metric for QW-Net is measured for 1080P to
1080P image reconstruction task. All numerics are based on FP32.

ing on deep learning, like TAAU [Kar14], FSR 1.0 [AMD21] and
2.0 [TC22].

For a fair comparison, both NSR and QW-Net are re-trained us-
ing the same training dataset as ours. Since NSR does not release
their official implementation and datasets, we follow their paper
and implement their method. NSR takes five consecutive frames as
input, we reorganize the training and testing data to accommodate
this need.

For QW-Net, we train and test their method using their official
released code. QW-Net [TVLF20] is designed for the antialiasing
task, which outputs the same resolution frame as the input. To keep
the same input resolution, we train their network for an antiliasing
task at the 1920× 1080 resolution. We downsample our result to
the same resolution for the comparison.

NVidia’s DLSS [Liu20] supports learning based real-time super-
sampling, however, no public information is available for the tech-
nical details and training data for their system. It is also unclear
about its computation and memory cost since the method lever-
ages proprietary hardware like TensorCore [NVI17]. As a result, to
provide a reference, we adopt the DLSS 2.3 plug-in for UE4 and
generate supersampling results using the same input as our testing
set.

For FSR 1.0 [AMD21] and 2.0 [TC22], the official released code
is used. We provide low resolution TAA frame input for FSR 1.0 as
required.

Quality We first compare the visual quality and temporal stability
of the supersampled results. Figure 1 and 5 show one full resolu-
tion frame generated by our method, with cropped regions showing
the comparison with existing methods. For each group of the com-
parison, the top row compares the reconstructed spatial details; the
bottom row shows the temporal profile illustrating the temporal sta-
bility. The temporal profile is generated by warping 20 consecutive
frames to the current frame with the motion vector. The vertical
axis is one line of the resulting frame; the horizontal axis is the
temporal dimension. Since the content is properly warped, a stable
temporal profile should be composed of smooth horizontal lines.
Aliasing in the temporal profile reflects visible temporal flickering.
The numerical comparison on all test datasets is also provided in
Table 1.

As shown in the results, supersampled frames produced by
TAAU miss a lot of spatial details. Learning based methods pro-
duce good spatial reconstruction results. This is also reflected in
the PSNR numerics, with TAAU having the lowest PSNR (32.95);

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Y. Guo et al. / Classifier Guided Supersampling

Our result - full frame Input Reference TAAU DLSS NSR Ours

Figure 5: Visual comparison among TAAU [Sal16], DLSS [Liu20], NSR [TVLF20] and ours on 4 testing datasets. Full frame supersampled
result from our method is shown to the left and a detailed comparison is shown to the right. For each comparison group, zoom-in views are
shown at the top and the temporal profiles are shown at the bottom. The vertical direction of the temporal profile represents one line in the
cropped region (marked as the colored bar). The horizontal direction represents temporal change. The temporal profile is already properly
warped, thus an ideal temporal stable profile should be a straight line without any aliasing as the reference dose.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Y. Guo et al. / Classifier Guided Supersampling

Figure 6: Visual comparison between QW-Net [TVLF20] and ours
on the INFILTRATOR and ELEMENTAL. Our result is downsampled
to the same resolution as the output of the QW-net.

Figure 7: Visual comparison among FSR [AMD21], FSR2 [TC22]
and ours on the INFILTRATOR and SHOWDOWN datasets.

our result (34.09) is comparable to DLSS (34.81); NSR achieves
the best result (38.71) with the cost of requiring a much higher
computation and memory throughput. Also, notice that the result
frames produced by NSR surfer from strong temporal flickering as
their temporal profile shows significant aliasing artifacts. Results
generated by DLSS 2.3 are temporally stable except for a highly
challenging case in the INFILTRATOR test sequence shown in Fig-
ure 1. In addition, we find some ghosting artifacts in their results
for the SEQUENCER sequence. Since it is difficult to judge the tem-
poral stability by paper figure, please refer to the supplementary
video to visually inspect the temporal stability.

Figure 6 compares antialiasing results by QW-Net [TVLF20]
and our supersampled result downsampled to the same resolution.
Our result contains more details and is also temporally stable. Re-
sults from QW-net still contain aliasing artifacts and suffer from
temporal flickering.

Figure 7 compares superresolution results by FSR 1.0 [AMD21],
2.0 [TC22] and our method. Without leveraging temporal informa-
tion for supersampling, the results of FSR 1.0 miss a lot of fine
details. The manually designed heuristics of FSR 2.0 fail to detect
some ghosting and thin feature cases, resulting in strong ghosting
or aliasing artifacts. On the contrary, our method can correctly han-
dle those cases and produces high quality results.

Performance Although achieving accurate and temporally stable
supersampling results, our method also takes much less computa-
tion and memory throughput. Table 2 lists the computation cost
and memory throughput for processing a single frame. Compared
to our network, NSR’s network [XNC∗20] takes 40.2 times more
computation and 6.7 times more memory throughput, making it sig-
nificantly slower. The QW-Net [TVLF20] takes 6.7 times computa-
tion and 1.6 times memory. Even considering all the benefits from
reduced precision computation, their network structure still takes
more computation than our network. Also note that QW-net only
outputs half-sized frames compared to ours.

4.2. Ablation studies

Here we validate the effect of our two-step design, class-aware
training loss and auxiliary buffers by a set of ablation experiments.
All the ablation experiments are trained and tested on the INFIL-
TRATOR dataset.

Direct regression Classifying the ghosting and aliasing region is
the key to our network design and training scheme. To validate
the efficiency of such a design, we adapt our basic network struc-
tures into a direct regression network that produces the composition
blending weight directly, without outputting a classification label.
As shown in Figure 8, results generated by the Direct Weight Re-
gression network (DWR) network exhibit a discontinuous temporal
profile, indicating temporal flickering.

Training loss To validate the effect of classification guided train-
ing loss, we train the composition network with only the L1 loss.
Although the same input and classification network are used, the
results show that the composition network trained using L1 loss
only (L1-Only) will produce temporally unstable results, as shown
in Figure 8.

On the contrary, our result (baseline) produces temporal stable
results with the temporal profile similar to the ground truth (Refer-
ence). Please also refer to the supplementary video to see how our
two-step design and training loss improves temporal stability.

Auxiliary input Our network takes several auxiliary buffers to
provide additional information for the supersampling. We test the
effect of those auxiliary inputs by removing each of them and test
the performance. Typical artifacts when removing each auxiliary
input are shown in Figure 9.

The counter buffer helps the refinement network correctly ap-
ply the proper blending weights, especially around aliasing regions.
Without the counter buffer (No-Ctr) the result shows strong arti-
facts around the object boundaries where aliasing occurs.

The depth difference buffer helps distinguish between geometry

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Y. Guo et al. / Classifier Guided Supersampling

Figure 8: Visual comparison of results generated by our method
(baseline), direct weight regression network (DWR) and composi-
tion network trained with only L1 loss (L1-only). A 64SPP refer-
ence is also included. The top row shows the spatial details with
zoom-in view, the bottom row shows temporal profile illustrating
temporal stability.

Trained on ELE. INF. SEQ. SHD. Avg.
INF.&ELE. 33.53 31.46 33.78 37.60 34.09

All 4 datasets 33.65 31.55 33.89 37.75 34.21

Table 3: We validate the generality of our method by training on
two datasets and tested on four datasets. The networks trained on
two datasets produce similar PSNR results as the networks trained
on all four datasets.

aliasing and geometry aliasing. Without the depth difference buffer
(No-DD) the result produces artifacts around thin features where
geometry ghosting and aliasing happen in nearby pixels.

The history color range buffer helps distinguish between shading
changes and aliasing regions. Without the history color range (No-
HCR) the network failed to detect rapid shading change regions,
causing incorrect shading results.

The classification logits buffer helps identify geometry alias-
ing away from geometry ghosting. Without the classification log-
its buffer (No-Logit), the result will mislabel geometry ghosting in
aliasing regions, leading to aliasing or flickering.

The motion vector buffer contains a clear boundary between
foreground and background, which helps determine the ghosting.
Without the motion vector buffer (No-MV), the result will lag and
blur behind the moving foreground objects.

Generality To validate the generality of our method, we train our
model on the INFILTRATOR and ELEMENTAL datasets and test its
generality on the other two datasets captured from SHOWDOWN

and SEQUENCER. For reference, we also train our networks with
training data from all four of them. Table 3 shows the numerical
results, the networks trained on all four datasets only introduce
marginal quality improvements, while the networks trained with
only two datasets generalized well on rendering frames from dif-
ferent games.

Figure 9: Ablation experiments by removing each auxiliary buffer
from the input. We remove the depth difference buffer (No-DD),
counter buffer (No-CTR), history color range buffer (No-HCR),
classification logit buffer (No-CL) and motion vector (No-MV) from
the input and retrain the networks. Here, we show supersampling
results from those variants and compare with results produced by
our method using all auxiliary buffers (baseline). The results show
typical artifacts when removing each of the auxiliary buffers, while
our method produces reasonable results similar to the reference.

5. Conclusion

We introduce a learning based temporal supersampling system
guided by the classification of pixel contents. The temporal su-
persampling task is decomposed into the pixel classification and
image composition task, with each task performed by a neural net-
work. Our method significantly improves the temporal stability of
learning based supersampling methods, and achieves comparable
image reconstruction quality to existing methods using much fewer
computation and memory costs.

Limitation and future works Our automatic data labeling scheme
cannot generate correct ghosting classification labels for video tex-
tures and transparent scenes, and affects the classification network
training. Figure 10 shows one result with video texture, some ghost-
ing artifacts occur due to the classification network failing to detect
this ghosting case.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Y. Guo et al. / Classifier Guided Supersampling

Figure 10: Our data labeling scheme cannot correctly label the
ghosting pixels introduced by video textures, the trained supersam-
pling network produces ghosting artifacts.

The supersampling output of our method is a per-pixel blend-
ing between the previous frame and the bi-cubic upsampled cur-
rent frame. Such low-pass filtering of the upsampling introduced
a slight blur in the final result. In the future, we will explore im-
proving the results’ sharpness by replacing the bi-cubic upsampling
with a learned upsampling kernel.

Although our network achieves real-time performance on chal-
lenging supersampling conditions that outputs a 4K image. Our
shader implementation is still far from fully optimized. Our net-
work is still based on FP32 memory storage and computation.
Leveraging reduced precision network design [TVLF20] can fur-
ther improve the speed. Acceleration with dedicated neural com-
pute units like TensorCore or XMX hardware is also an interesting
future work.

The auxiliary buffers act an important role to encode critical his-
tory information for supersampling. Currently, our auxiliary buffer
is manually designed. In the future, the auxiliary buffer can be au-
tomatically learned, which will be more effective and also efficient.

Our network structure is manually designed for achieving real-
time performance on the current GPU hardware. Different hard-
ware or different supersampling configurations might need man-
ually adjusting the network structures. Combining the classifier
guided network design with neural network architecture search is
also one promising direction that leads to more efficient networks
for various supersampling tasks on future hardware.

Acknowledgments

We would like to thank the reviewers for their constructive feed-
back; Chong Zeng, Jilong Xue, Yuqing Xia, Wei Cui and the
NNFusion [MXY∗20] team’s support for optimizing the HLSL
shader code; Youkang Kong’s help implementing the NSR method
[XNC∗20]. We would also like to thank people from the Microsoft
Xbox and xCloud team for valuable discussions, including Daniel
Kennett, Hoi Vo, Matt Bronder and Andrew Goossen.

References
[AAB∗15] ABADI M., AGARWAL A., BARHAM P., BREVDO E., CHEN

Z., CITRO C., CORRADO G., DAVIS A., DEAN J., DEVIN M., GHE-
MAWAT S., GOODFELLOW I., HARP A., IRVING G., ISARD M., JIA
Y., JOZEFOWICZ R., KAISER L., KUDLUR M., LEVENBERG J., MANÉ
D., MONGA R., MOORE S., MURRAY D., OLAH C., SCHUSTER M.,
SHLENS J., STEINER B., SUTSKEVER I., TALWAR K., TUCKER P.,
VANHOUCKE V., VASUDEVAN V., VIÉGAS F., VINYALS O., WAR-
DEN P., WATTENBERG M., WICKE M., YU Y., ZHENG X.: Ten-
sorflow: Large-scale machine learning on heterogeneous distributed

systems, 2015. URL: http://download.tensorflow.org/
paper/whitepaper2015.pdf. 6

[AKB20] ANWAR S., KHAN S., BARNES N.: A deep journey into super-
resolution: A survey. ACM Computing Surveys (CSUR) 53, 3 (2020). 3

[Ake93] AKELEY K.: Reality engine graphics. In Proceedings of the 20th
annual conference on Computer graphics and interactive techniques
(1993), pp. 109–116. 2

[AMD21] AMD: Fidelityfx super resolution. In GPU Open (2021). 6, 8

[CKS∗17] CHAITANYA C. R. A., KAPLANYAN A. S., SCHIED C.,
SALVI M., LEFOHN A., NOWROUZEZAHRAI D., AILA T.: Interactive
reconstruction of monte carlo image sequences using a recurrent denois-
ing autoencoder. ACM Trans. Graph. 36, 4 (jul 2017). 2

[Epi20] EPIC GAMES: The unreal engine 4. https://www.
unrealengine.com/, 2020. 5

[JESG12] JIMENEZ J., ECHEVARRIA J. I., SOUSA T., GUTIERREZ D.:
Smaa: Enhanced subpixel morphological antialiasing. In Computer
Graphics Forum (2012), vol. 31, Wiley Online Library, pp. 355–364. 2

[Kar14] KARIS B.: High quality temporal supersampling. In SIGGRAPH
2014 Advances in Real-Time Rendering in Games course. (2014). 2, 6

[Liu20] LIU E.: Image reconstruction for real-time rendering with deep
learning. In GPU Technology Conference (GTC) (2020). 3, 4, 6, 7

[MXY∗20] MA L., XIE Z., YANG Z., XUE J., MIAO Y., CUI W., HU
W., YANG F., ZHANG L., ZHOU L.: Rammer: Enabling holistic deep
learning compiler optimizations with rtasks. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 20) (Nov.
2020), USENIX Association, pp. 881–897. 10

[NVI17] NVIDIA: Discover how tensor cores accelerate your
mixed precision models. https://developer.nvidia.com/
tensor-cores, 2017. 6

[Res09] RESHETOV A.: Morphological antialiasing. In Proceedings of
the Conference on High Performance Graphics 2009 (2009). 2

[RF17] REDMON J., FARHADI A.: Yolo9000: better, faster, stronger.
In Proceedings of the IEEE conference on computer vision and pattern
recognition (2017), pp. 7263–7271. 5

[Sal16] SALVI M.: An excursion in temporal supersampling. In Game
Developer’s Conference (GDC) (2016). 2, 6, 7

[ST214] St 2084:2014 - smpte standard - high dynamic range electro-
optical transfer function of mastering reference displays. ST 2084:2014
(2014), 1–14. doi:10.5594/SMPTE.ST2084.2014. 6

[SVB18] SAJJADI M. S., VEMULAPALLI R., BROWN M.: Frame-
recurrent video super-resolution. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2018), pp. 6626–6634. 5

[TC22] THOMAS A., COLIN R.: Fidelityfx super resolution 2.0. In Game
Developer’s Conference (GDC) (2022). 2, 5, 6, 8

[TVLF20] THOMAS M. M., VAIDYANATHAN K., LIKTOR G., FORBES
A. G.: A reduced-precision network for image reconstruction. ACM
Trans. Graph. 39, 6 (nov 2020). 2, 6, 7, 8, 10

[WCH20] WANG Z., CHEN J., HOI S. C.: Deep learning for image
super-resolution: A survey. IEEE transactions on pattern analysis and
machine intelligence 43, 10 (2020), 3365–3387. 3

[Wri19] WRIGHT L.: Ranger - a synergistic op-
timizer. https://github.com/lessw2020/
Ranger-Deep-Learning-Optimizer, 2019. 6

[XNC∗20] XIAO L., NOURI S., CHAPMAN M., FIX A., LANMAN D.,
KAPLANYAN A.: Neural supersampling for real-time rendering. ACM
Trans. Graph. 39, 4 (jul 2020). 1, 2, 4, 6, 8, 10

[YLS20] YANG L., LIU S., SALVI M.: A survey of temporal antialiasing
techniques. Computer Graphics Forum 39, 2 (2020), 607–621. 1, 2, 4

[YNS∗09] YANG L., NEHAB D., SANDER P. V., SITTHI-AMORN P.,
LAWRENCE J., HOPPE H.: Amortized supersampling. ACM Transac-
tions on Graphics (TOG) 28, 5 (2009), 1–12. 2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://www.unrealengine.com/
https://www.unrealengine.com/
https://developer.nvidia.com/tensor-cores
https://developer.nvidia.com/tensor-cores
https://doi.org/10.5594/SMPTE.ST2084.2014
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer

