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Abstract. In this paper, we propose a practical method to estimate
object appearance from an arbitrary number of images. We use a mov-
ing flashlight as light source, and encode surface reflectance properties
in a pre-learned embedded latent space. Such lighting and appearance
model combination enables our method to effectively narrow the solution
space. Uncalibrated illumination requirement extremely simplifies our
setup and affords it unnecessary to accurately locate light positions in
advance. Moreover, our method automatically selects key frames before
appearance estimation, which largely reduces calculation cost. Both syn-
thetic and real experiments demonstrate that our method can recover
object appearance accurately and conveniently.
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1 Introduction

Appearance capture is attractive but also challenging in both computer graph-
ics and vision communities. It enables various applications in VR and AR, such
as image relighting and virtual object insertion. Specially designed devices are
used for accurate appearance capture [2,3,8]. Although these methods can repro-
duce high-resolution appearance, involved extensive scan effort prevents them
from practical applications. In the past decade, consumer digital cameras have
evolved a lot and it is quite convenient for non-expert users to capture high-
quality images. For reflectance recovery, recent deep learning based methods
learn shape, material priors from large-scale datasets, and take fewer images than
traditional methods to infer appearance properties. It shows good prospects to
design lightweight methods based on mobile phone cameras and deep learning
technologies.
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In this paper, we aim to capture object appearance from multiple input
photographs. We use a neural network as an optimizer to estimate SVBRDF and
normal under uncalibrated flashlight illumination. Object reflectance properties
are encoded in a pre-learned latent space. Such a well-constructed latent space
not only promises a reasonable SVBRDF but also provides an elegant search
routine towards the final solution. During optimization, we sum reconstruction
loss for each input photograph together as [7,10], and this provides flexibility
about the number of input images. Experiments demonstrate that our method
can recover SVBRDF from plausible to accurate with the increment of input
image number.

For multiple images capture, one concern is how to take photographs effi-
ciently. Since shooting videos of objects under a moving flashlight is quite simple,
we select frames from videos as input. Generally there is a trade-off between the
image number and recovery accuracy. Given the budget of the input image num-
ber, we propose to select the most valuable image collection via classic clustering.
Experiments show that our strategy chooses reasonable images collection.

In summary: We propose a practical framework to estimate SVBRDF for
objects with only off the shelf devices. Planar material latent space is adopted
for object surface via normal decomposition. And we apply key frame selection
strategy to promote algorithm efficiency.

2 Related Work

Intensive Measurement. One straightforward approach to capture appearance
is brute-force measurement. Researchers design professional devices to control
lighting and camera views for such purpose [15,19]. Dana et al. [3] used a robot
arm to densely sample incident light and view directions for planar material
samples. Another kind of common devices are light stages [2], they are mounted
with a large number of lights and able to provide incident light from consid-
erable directions. Linear light source reflectometry [8] is also broadly adopted
for appearance recovery. Although those methods can recover vivid appearance,
their dedicated devices hinder them from consumer applications.

Simplified Acquisition. In order to reduce the operating threshold for average
users and simplify the acquisition process, some searchers capture appearance
with hand-held commodity devices. Wu et al. [20] took Kinect sensors to scan
object geometry and acquired illumination via a mirror sphere, then computed
object appearance in an inverse rendering framework. With known geometry
but unknown natural illumination, Dong et al. [6] estimated isotropic surface
SVBRDF from a video of a rotating subject. Some methods jointly solve shape
and materials with single or several images as input [1,17]. Comparing with these
methods, we utilize neural networks to regularize SVBRDF in a reasonable space
rather than relying on hand-crafted priors or specified heuristics.
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Fig. 1. (a)-(b): Capture setup. During capture, all lights in the room are turned off.
Camy is fixed to shoot videos of target object. Camp serves as a light source. (c):
Reconstructed object. (d)-(g): Estimated diffuse, normal, roughness and specular maps.

Deep Inverse Rendering. Li et al. [12] proposed a novel self-augment training
scheme that effectively expanded training dataset. Deschaintre et al. [4] uti-
lized in-network render layers to construct reconstruction loss and estimated
reflectance properties from a flash-lit single image. Similar to [4], Li et al.
[13] benefited from in-network render and added a dense CRF model to refine
final results. Taking one image as input, these methods often fail when visible
reflectance features are insufficient to distinguish ambiguities. Then novel frame-
works [5,7] are proposed to infer SVBRDF from an arbitrary number of images
as input. These methods focus on near-planar material sample, in contrast, ours
method is able to recover object appearance.

Recently, Li et al. [14] proposed a learning-based method to jointly regress
shape, SVBRDF and illumination from a single flash-lit image. However it may
suffer from insufficient observations. Another related work is [9], they designed
an asymmetric deep auto-encoder to model image formation and inverse render-
ing process. Extended from [9], Kang et al. [10] utilized learned lighting patterns
to efficiently capture object appearance, and exploited diffuse and normal infor-
mation from multiple views to reconstruct geometry.

3 Method

3.1 Preliminary

Our goal is to estimate object SVBRDF and normal in a single view. As showed
in Fig.1, a fixed camera is deployed to capture object-center images while a
flashlight is moving. The power distribution of the flashlight is roughly concen-
trated in a solid angle. Therefore, we model the flashlight as a point light source
as long as keep it facing the target object during the capture process. We assume
that camera inner parameters are fixed, field of view fov is known, and flashlight
intensity keeps constant as I;,;. We adopt the Cook-Torrance microfacet BRDF
model with the GGX normal distribution [18] and assign BRDF parameters for
each point p: diffuse abledo k4(p), specular albedo ks(p) and monocular rough-
ness a(p). Our method solves SVBRDF and normal n(p) for target object in a
fix view, with flashlight position /; unknown for each input photograph I;.
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Fig. 2. Decouple shape and surface material. From (a) to (d), we show normal n, base
normal np and detail normal ng of ref bunny. In (e): We show 2D slice of object
surface. Origin object can be decomposed as base shape and planar material samples.

3.2 Decouple Shape and Surface Material

Demonstrated in [7], a pre-learned latent space can effectively model appearance
of planar exemplars and benefits SVBRDF estimation. In our case, we argue that
object surface material can be modeled like planar material samples too.

As showed in Fig. 2, object surface can be viewed as warped planar material
samples. We decompose normal n(p) as base normal ny(p) and detail normal
nq(p). Base normal ny(p) relates with object shape, and detail normal ng(p)
reflects material characteristics. For each point, a local coordinate system C(p)
can be constructed: base normal ny(p) direction is assigned as local z axis z(p)
and local y axis y(p) is assigned to be perpendicular to direction (1,0, 0). In such
a local space, detail normal ng(p) means deviation from base normal ny(p) and
engraves detail variation. Therefore we get:

n(p) = np(p) © na(p) (1)

Operation o means transforming ng(p) from local space C(p) (constructed
according to np(p)) into global space. It crosses the gap between complex shape
and planar material samples.

Once shape and surface material are decoupled, it is easy to convert lighting
and viewing directions into the local space of each point C(p). Solving object
SVBRDF and detail normal n4(p) in local space is equal with planar material
samples appearance recovery. We adopt local lighting model, object position is
needed to calculate light direction and intensity attenuation for each point. But
in fact, the distance d; between the flashlight and object 0bj is much larger than
the scale of object geometry variation. Thus, with known fov, a rough depth
map in the camera view is enough to calculate object position.

3.3 Reflectance Recovery Under Uncalibrated Illumination

Object shape, material, and illumination jointly decide how the object looks
like. If illumination is under control, SVBRDF estimation would be easier. In
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Fig. 3. Overview of the deep inverse rendering framework. We use the method [14] to
estimate SVBRDF and base normal from single collocated-lit image as initialization.
A specially designed SVBRDF auto-encoder is adopted for deep inverse rendering: we
adjust z code to decode SVBRDF and simultaneously update base normal and point
light positions. Finally, we directly refine all components in the post-processing step.

this paper, we drop fully-controlled illumination and each input photograph is
lit by a flashlight with unknown position /;. In addition, we assume flashlight
intensity I;,; is constant during the whole capture process.

As showed in Fig. 3, our method consists of three stages: initialization, deep
inverse rendering and refinement. The core of our method is deep inverse render-
ing stage. We constrain object reflectance characteristics in a pre-trained latent
space [7] and adjust the latent code z to decode reflectance parameters s:

s = D(z), (2)

where s = (ng, kq, o, ks).

We formulate the deep inverse rendering as a minimization that jointly
updates the latent code z, base normal n;, and light positions {l;} to minimize
the differences between input photograph I; and corresponding rendering image
R(Sv Ny, lz)

arg minZE(Ii,R(D(z),nb, 1;)). (3)
Z,le,{li} i
where we use the common loss function [4,7] as:
L(z,y) = ||log(z + 0.01) — log(y + 0.01)]]. (4)

The whole pipeline of our method is as follows:

1. Use existing methods to initialize base normal, depth and SVBRDF with

single collocated-lit image I.,; as input.

Search for initialized light positions for each input photograph I;.

3. Optimize latent code z, base normal n, and light positions {l;} in deep inverse
rendering stage.

4. Image space refinement for SVBRDF, detail normal ng4, base normal n; and
light positions {/;}.

.
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Reflectance Initialization. We capture a special image I.,; whose correspondent
flashlight is collocated with camera lens, as previous methods [13,14,16]. I.o
can be used [14] to initialize our reflectance properties. The method takes I.o
as input, and estimates object depth dA, SVBRDF s = (kg4, a, ks) and normal 7
in a cascaded network. We take their estimated normal n as base normal ny,
and initialize ng as a flatten normal map (nq(p) = (0,0, 1)). In addition, given
camera fov, we project depth map d into 3D coordinates as ob ject position map
Pos.

Light Initialization. Initialized SVBRDF § and normal 7 would help us initialize
light position I; for each photograph I;. We use a try-and-compare strategy to
search for light position candidates.

First, we define the metric to evaluate the possibility that a light position
candidate l¢; can be used to initialize Z, For input image I;, we use §, n and I¢;
to render image R;, and calculate RMSE for R; against I;. Therefore, the goal
of light initialization is to quickly find l¢; that has smaller RMSE for R;.

Then we search for light position candidate [¢; in iterations. 1) At first, we
construct a rectangular cuboid centered on the camera. During image capture,
the flashlight is moving around the camera. Therefore, we set the cuboid size as
height = wy, * d, length = wy * d, depth = wq * d, where d is the average of depth
map d and wp, wy, wq are scale coeflicients. We draw grids with step (ws, ls, ds)
in the cuboid and find the current best l¢; from all vertices. 2) Next we construct
downsized cuboid centered on l¢;, and draw downsized grids in the new cuboid.
Similarly, we find new [c; from all vertices. We iterate the search process until
l’ci is not updated or cuboid size is below the threshold.

Finally, for each photograph I, [c; is used as initialized light position L.

Image Space Refinement. In our optimization network, latent code encodes
reflectance properties in the bottle neck of auto-encoder. It usually decodes
reflectance properties with details lost. Thus, we add post-process step to refine
SVBRDF property maps pixel by pixel [7]. Instead of adjusting the latent code z,
we directly update SVBRDF parameters kq,a.k, detail normal ng and light posi-
tions {/;} to minimize the differences between I; and rendering image R(s, np, ;).
We formulate the image space refinement as:

arg min Z[,(Ii,R(S,nb,li)). (5)

ka,onks ma,me {li}

3.4 Key Frames Selection

We directly select images where the target object shows the distinctive appear-
ance. When photographs look similar, they are possibly lit by flashlights close
to each other. Thus, selecting different looking images means choosing different
lighting directions. Here we rely on the classic k-means clustering method to
divide all captured images into different clusters, and select centroids as picked
images. Given recorded videos, our strategy can free users from tedious manual
image selection and promotes efficiency.
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4 Results

We implement our method in Tensorflow and take built-in layers to construct a
differentiable render. For SVBRDF auto-encoder, we inherit trained model from
[7]. We choose Adam [11] as optimizer, setting learning rate as 1073 and 3; as
0.5. In deep inverse rendering stage, we run 6k iterations; In refinement stage,
we run 1k iterations.

At the beginning, we create synthetic datasets to validate proposed method.
We randomly compose distorted elementary shapes into synthetic objects like
[21] and apply texture from materials dataset [4]. In addition to composed
shapes, we also select several models from the Standford 3D Scanning Repository.
We render images with pre-defined point lights (used to approximate real flash-
lights) in a rectangle area. To demonstrate the effectiveness of the whole method,
we gradually relax the restriction from known lighting positions to unknown.

4.1 Known Lighting

For the synthetic experiments, we set camera fov as 60°, image resolution as
256 x 256, and the distance between the camera and objects as 2units. Suppose
the camera center is C' and the target object is at point O. All point lights are
located insides the plane which is perpendicular to the line CO. In the 2x2
unit? rectangular area, we uniformly place point lights at vertices of the 5x5
grid. These point lights are used to render LDR input images I,. For testing,
we sample point light positions in the 4x4 grid, crossly among 5x 5 grid. Given
ground truth light positions I; for each input photograph I;, we take multiple
images as inputs to estimate appearance properties.

To quantitatively evaluate our methods, we adopt metrics as follows: 1)
RMSE(root mean square error) for estimated diffuse, specular and roughness
albedos against ground truths. sest = (ks, k4, @); 2) normal deviation between
estimated normal n.s and ground truth ng, in degree; 3) RMSE for rendering
images R’(nest,sest,fz-) under test lightings {ll} Note that SVBRDF albedos
and rendering images are normalized in [0,1] to calculate RMSE.

We test on 21 objects with different materials and show average error in the
Table 1. All SVBRDF property errors are smaller than initialization, and normal
accuracy has been improved impressively. In general, our results are much closer
to the reference than initialization. We show results of bunny in Fig.4. For
simplification, we adopt abbreviations: diff for diffuse, nrm for normal, spec
for specular, rou for roughness, I'nit for initialization, Opt for optimization and
Ref for reference. Comparing with initialization, less highlight artifacts show in
estimated diffuse albedo, and our estimated normal map contains more details.

4.2 Reflectance Recovery Under Uncalibrated Illumination

Uniformly Sampled Lights. At first, we take 25 images lit by uniformly sampled
lights as input, and still test on synthetic objects mentioned in Sect. 4.1 (Without
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Fig. 4. Results with known lighting. Fig. 5. Result with unknown lighting.

Table 1. Result with 25 images. Opt_1: optimization with uniformly sampled known
lighting. Opt_2: optimization with uniformly sampled unknown lighting. Opt_3: opti-
mization with k-means selected unknown lighting.

Error |diff |rou spe nrm | Render | Light
Init |0.0811|0.1652 0.1096  19.47 |0.0976 |-
Opt-10.0189 | 0.0729 | 0.0706 | 1.2235 | 0.0548 | -
Opt_2 | 0.0200 | 0.0716 | 0.0706 1 1.3001 | 0.0549 | 0.0398
Opt-30.0267 | 0.1048 | 0.0732  2.1573 | 0.0545 | 0.0448

special statement, we take such 21 objects for synthetic experiments by default).
Light positions estimation will be measured in distance. We show average error
in Table1l. Comparing with initialization, all refectance properties have been
improved, and RMSE for rendering images is lower. At the same time, estimated
light positions are close to the actual light positions. We show optimization result
of buddha in Fig.5 and light position estimation in Fig.6. After optimization,
light positions converge to ground truth dramatically.

K-means Frames Selection. In synthetic experiments, we render images with
400 uniformly sampled lights from a grid of 20x 20 in the same rectangular area
mentioned in Sect.4.1. In Fig.7, we show k-means clustering results for bunny.
Each point represents a image lit by a flashlight. Since all lights in synthetic
experiments are sampled in a rectangular planar, we take (z,y) from actual
light position (z, y, z) as 2D coordinates to draw points in the figure. We observe
that k-means clustering results are coincident with flashlight positions. If some
flashlights are close, their correspondent images will be clustered in the same
group.

Next, we select 25 images and summarize optimization results in Table 1. All
SVBRDF properties, rendering images quality, and normal estimation have been
improved significantly. As showed in Fig.9, initialization method [14] cannot
distinguish diffuse and specular components clearly. Their method misses normal
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Fig. 8. Optimization result with different number of input.

details, leaving variations in diffuse albedo. In comparison, our method takes
multiple images to estimate accurate SVBRDF, and rendering images under
novel lighting look almost similar with ground truth.

Number of Input Images. We show how the number of input images affects
optimization results. We use k-means strategy to select images with the number
k ranging from 1 to 50 and show comparison in Fig. 8. In general, as the increment
of input image number k, diffuse, specular and roughness estimation performance
improves. Estimated normal becomes dramatically accurate with more input
images. When k comes to 10, the rate of improvement slows. Another key point
is 25, more images than 25 bring little benefits.

Comparison with Classic Inverse Rendering. We compare our method with clas-
sic inverse rendering that directly optimizes SVBRDF and normal in image
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Fig. 9. Results for bunny with 25 selected images. Each row shows SVBRDF properties,
normal map and 3 rendering images under novel lighting.

space. Similar with the post-process step introduced in Sect. 3.3, we take the dif-
ferentiable render in our network to implement classic inverse rendering. Instead
of updating both base normal n, and detail ng4, classic inverse rendering directly
adjusts global normal n. We formulate the classic inverse rendering as:

arg min Z/L([@,R(ks,kd,a,n,li)). (6)
kaoke,n, (i}
We provide the classic inverse rendering with the same initialization and run
sufficient number of iterations to make sure convergence. Figure8 shows that
our method recovers more accurate SVBRDF and normal.

4.3 Real Acquisition Results

We use the ProCam app in iPhone 11 to capture all images and videos. We
manually adjust ISO, white-balance, aperture and shutter speed parameters.
During image capture, all camera configurations are fixed. For each object, we
first shot the collocated-lit image, then turn video mode on while moving Campg
manually around the target.

In Fig. 10, we show an example of real acquisition. Compared with initialized
SVBRDF and normal, our method produces accurate diffuse and normal map
with more details. Our rendering images are very close to references: highlight
appears correctly and image intensity distribution is visually consistent with
references. Realistic rendering images illustrate that our method can recover
object appearance effectively in real scenarios.
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Fig. 10. Results for real captured object with 25 selected images. First row includes
captured images. Left four are part of input, and another three are reference images. In
second and third rows: we display SVBRDF properties, normal map and 3 rendering
images under novel lighting. Each render image column shares the same novel lighting.

5 Conclusions and Future Work

We propose a lightweight method to recover object reflectance with uncalibrated
flash lighting. Modeling object surface material in a pre-learned latent space
enables our method to always recover reasonable SVBRDF and constrain opti-
mization routine to reduce ambiguity. Key frames selection strategy reduces
both capture and calculation cost. Synthetic and real experiments show that
our method can recover accurate SVBRDF and normal efficiently.

One limitation of our method is that we ignore inter-reflection among object
components. Thus, we will add multiple bounce reflection estimation modules in
the future. Currently, our method may fail if other indoor lights are not switched
off. Tt is interesting to extend our methods under natural illumination.
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