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Appearance modeling is an essential task in computer graphics for capturing and reproducing rich
appearance of real world materials under different lighting and viewing conditions. With recent
advances of deep learning techniques, a set of deep learning based approaches have been proposed for
improving the efficiency and result quality of appearance modeling. In this paper, we provide a survey
of these deep appearance modeling techniques from both graphics and machine learning perspectives,
and discuss the challenges and opportunities along this direction.
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1. Introduction

Modeling the appearance of an object is a fundamental prob-
lem in computer graphics (Dorsey et al., 2008; Weinmann and
Klein, 2015). In computer graphics, the appearance represents
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how the light interacts with the surface, works together with
geometry shape and lighting condition to determine the final
rendering results. One major challenge of appearance modeling
is the high dimensionality of the appearance data. In its raw
form, the appearance usually represented as high dimensional
functions, such as 8D light field (Levoy and Hanrahan, 1996;
Gortler et al., 1996), 6D spatially varying surface reflectance func-
tion (Nicodemus et al., 1992), 4D light transport (Ng et al., 2003;
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Peers et al., 2009), etc. Fortunately, the high dimensional appear-
ance data usually exhibits strong coherency, which can be utilized
for efficient appearance modeling.

Brute-force capture the high dimensional function requires
long measurement and processing time with dedicated capture
devices. Data-driven approaches either design a compact model
following heuristics and fit the measurements into the model
(Matusik et al., 2003; Lawrence et al., 2006; Dong et al., 2010),
or take data coherency as a constraint (Peers et al., 2006; Chen
et al., 2014; Zhou et al., 2016). However, due to the limited
number of real measured appearance data and the limited tools
that support learning from large scale datasets, classical data-
driven approaches still follow the ad-hoc design of the models
and data-fitting algorithms. Many classical data-driven methods
only exploit one specific type of data coherency or data co-
herency within the specific input material sample, limiting their
efficiency.

With the recent advance of deep learning (Goodfellow et al.,
2016), efficient feature representations can be learned directly
from a large collection of data; as a result, deep learning became
an efficient tool for appearance modeling. Both the representa-
tion model and the data-fitting algorithm can be learned from
data; the representation model is generic, sample independent,
utilizing the data coherency across the whole training dataset.

Recently, there are several works that successfully apply deep
learning to surface reflection estimation (Li et al., 2017; Deschain-
tre et al., 2018; Li et al., 2018a,b; Kang et al., 2018; Gao et al.,
2019; Deschaintre et al., 2019), light transport modeling (Ren
et al., 2013, 2015; Xu et al., 2018), face modeling (Lombardi
et al., 2018) material synthesis (Zsolnai-Fehér et al., 2018) and
BTF compression (Rainer et al., 2019). Among those topics, surface
reflectance modeling has most works embracing the trend of
deep learning. In recent years, researchers developed a series of
works using deep learning techniques in different perspectives
for surface appearance modeling (some experimental results can
be found in Fig. 1). To better discuss and compare different design
choices of applying deep learning techniques, this survey will
discuss those deep surface reflectance modeling works from both
the computer graphics and machine learning perspectives.

In this paper, we will first provide preliminary background
knowledge and briefly revisit data-driven appearance model-
ing works, and discuss the generic scheme for deep learning
based appearance modeling (Section 2). Then we summarize
recent deep appearance modeling works based on their tasks and
methodology, from both the computer graphics (Section 3) and
machine learning (Section 4) perspective. Finally, we will discuss
research opportunities and future directions for developing new
deep appearance modeling solutions (Section 5).

2. Scope and overview

Appearance modeling research focuses on a wide range of
optical phenomena, such as surface reflection, subsurface scatter-
ing, and diffraction materials. Among those appearance modeling
areas, surface reflectance modeling has most works embracing
the trend of deep learning. In recent years, researchers developed
a series of works using deep learning techniques in different
perspectives for surface appearance modeling. As a result, this
survey will mainly focus on works that leveraging deep learning
for surface appearance modeling. Besides having the deep surface
reflectance as the main topic, we will also cover closely related
works such as deep learning based light transport modeling.

There are other topics in appearance modeling such as translu-
cent materials (Nicodemus et al., 1992; Jensen and Buhler, 2002;
Wang et al., 2007), multi-layered material (Jakob et al., 2014a;
Yan et al., 2016; Zeltner and Jakob, 2018; Belcour, 2018), bi-scale

materials (Wu et al., 2009, 2011, 2013; Lan et al., 2013), diffrac-
tion (Toisoul and Ghosh, 2017; Holzschuch and Pacanowski, 2017;
Werner et al., 2017) and polarization effects (Riviere et al., 2017),
glint reflections (Yan et al., 2014; Jakob et al., 2014b; Werner
et al., 2017), light-transport decomposition (Dong et al., 2015),
etc. As far as our knowledge, deep learning has not been widely
applied in those directions, however, modeling those effects also
shares similarities to surface reflectance modeling, thus adapting
deep learning on those areas would lead to potential future
works.

2.1. Preliminary

The surface reflectance models how the light reflects on an
opaque surface point. Specifically, surface reflectance at a point
x can be described by the Bidirectional Reflectance Distribu-
tion Function (BRDF) (Nicodemus et al., 1977), a 4D function
that relates incident irradiance to outgoing radiance: A common
approximation is the dichromatic BRDF which decompose the
reflection into a diffuse component and a specular component:

fr (ωi, ωo; x) =
ρd(x)
π

+ ρs(x)fs(ωi, ωo; x), (1)

where ωi and ωo are the incident and outgoing directions re-
spectively, ρd and ρs are the diffuse and specular coefficient or
albedo. The diffuse component is constant over different incident
and outgoing direction, and fs is an angular function that models
the specular surface reflectance.

Many physical based models have been proposed to further
approximate and simplify the BRDF, includingWard model (Ward,
1992), Cook–Torrance model (Cook and Torrance, 1982), gener-
alized microfacet model (Ashikmin et al., 2000), etc. Here we
introduce some basic BRDF terminology using the Ward BRDF
model as an example. At each surface point x the Ward model
(Ward, 1992) can be determined by its diffuse albedo ρd, specular
albedo ρs and specular roughness parameter α follows:

fr (ωi, ωo, x) =
ρd(x)
π

+ ρs
e− tan2 δ/α2

4πα2
√
(ωi · n(x))(ωo · n(x))

, (2)

where δ is the angle between the halfway vector ωh = (ωi +

ωo)/∥ωi + ωo∥ and the normal n(x). The diffuse ρd and specular
albedo ρs determine the overall energy scale of the diffuse and
specular reflection, while the roughness α affects the shape of the
specular highlights. Smaller roughness represents shiny surfaces
with mirror liked specular highlight, larger roughness means
glossy or matte surfaces with blurred highlight. Aside from those
parameters, the surface normal n affects the local coordinate that
defines the incident and outgoing direction, as a result, surface
normal is also regarded as a part of surface appearance in many
surface appearance modeling works.

2.2. Data-driven surface appearance modeling

To better understand the recent works on deep surface re-
flectance modeling, here we first give a brief review of classical
data-driven surface appearance modeling works.

Surface reflectance can be reconstructed independently at
each point, for example using a gonioreflectometer (Mcallis-
ter, 2002; Lawrence et al., 2006) for brute-force sampling the
complete 4D function. With a sufficient number of measure-
ments, one can fit a low parametric model at each surface point
individually (Gardner et al., 2003; Aittala et al., 2013)

Realworld materials often exhibit spatial coherency, different
spatial points may have similar BRDFs. Following this assump-
tion, for spatially smooth varying materials, reflectance shar-
ing (Zickler et al., 2005) formulates SVBRDF reconstruction as
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Fig. 1. Examples rendering results of deep appearance modeling. Rendering results of SVBRDF of planar surface captured by Li et al. (2017) (a), Gao et al. (2019)
(b) and Kang et al. (2018) (c). (d) Rendering results of geometry shape and SVBRDF estimated by Li et al. (2018b).

Fig. 2. A general data-driven appearance modeling pipeline. Based on this pipeline, we classify recent deep appearance modeling works into three categories: the
deep appearance regression that models the fitting and reproducing process as an end-to-end network; the deep appearance reconstruction that explicitly learns
a latent space with learned reproducing process and optimization as the fitting process; and appearance modeling works with learned lighting for the capturing
process.

a scattered interpolation problem, and fits both its angular and
spatial distribution with basis functions. For piecewise constant
materials, Lombardi and Nishino (2012) assumes pixels with sim-
ilar chromaticity represent the same material and estimate the
SVBRDF of a curved object from a single image under unknown
point illumination. (Wang et al., 2008) proposed an anisotropic
SVBRDF acquisition method that finds surface points with similar
BRDF by comparing partial NDF computed from densely sample
BRDF slice.

With separately captured basis BRDF (Dong et al., 2010) or
basis BRDF reference (Ren et al., 2011), the local linear blending
weights of those basis can be estimated from sparsely captured
images. (Lensch et al., 2003) proposed method estimating a Lafor-
tune model basis by progressive clustering over surface points.
Low-rank optimization can be used to jointly reconstruct the
basis BRDF and spatially varying weights (Chen et al., 2014; Zhou
et al., 2016).

Traditional data-driven surface appearance modeling relies
on handcrafted heuristics, such as spatially smooth distribution,
piece-wise constant, linear basis blending, etc. Each heuristic only
works efficiently for one specific type of materials and tied to
one specific kind of reconstruction algorithms. With the recent
advances of deep learning, it is possible to learn heuristic from
large scale datasets, enable more efficient and general surface
appearance modeling.

2.3. The deep appearance modeling pipeline

As illustrated in Fig. 2, a general scheme for data-driven ap-
pearance modeling can be divided into three major steps: first the
capturing process gets the input measurements from the exem-
plar object; then the input measurement is fitted into latent rep-
resentation model; which can be used to reproduce the compete
high dimensional appearance data. In the following discussion,
We summarize the three main steps as the capturing process,
fitting process and reproducing process. In the following discussion,
we will discuss recent deep appearance modeling works in this
framework, and how to use deep learning techniques to model
those processes.

3. Discuss of deep appearance modeling from a computer
graphics perspective

In this section, we will discuss deep surface appearance mod-
eling works from the appearance modeling pipeline’s perspective.
We classify recent works into three categories: The deep ap-
pearance regression, which represents the appearance modeling
problem as an image to image regression problem, representing
the fitting and reproducing process as an end-to-end learned sys-
tem; The deep appearance reconstruction, which has an explicitly
designed latent space, the fitting and reproducing process are
represented by separated learned part; The appearance model-
ing with learned lighting conditions methods that represent the
capturing process with a trainable part and learn the optimal
lighting conditions together with the appearance modeling prob-
lem. A brief summary of recent works from the computer graphics
perspective is presented in Table 1.

3.1. Deep appearance regression

For the most appearance modeling scenarios, the user wants
a simplified input, either a single image that collected from the
Internet or one flash lit photograph of the material sample, which
can be easily captured via a mobile phone. For those scenarios,
the capturing process is pre-determined by the scenario, the fit-
ting and reproducing process can be represented by a regression
model which learned the mapping from the input photograph to
the output appearance data.

Li et al. (2017) first proposed a learning based solution that
estimates surface reflectance from a single image lit by natu-
ral environment map. By assuming the input image is a planar
material sample lit by environment map, which holds true for
many online images, such method allows the user to select input
images directly from the Internet. This also allows collecting
large amount of valid input images from online image collections,
which can be utilized by their specialized training scheme. (dis-
cussed in Section 4). On the other hand, rely on environment map
lit input means less control about the illumination and there is
no guarantee that every surface pixel exhibits specular reflection
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effects, leading unstable specular estimation. As a result, they lim-
ited their output surface reflectance model with a homogeneous
specular component and spatially varying albedo and normal
variations.

Using active lighting, such as a flashlight on the mobile phone
can reveal more appearance information especially for specular-
ity. By assuming the input image is a planar material sample
lit by a unknown environment map and a dominating flashlight
collocated with the camera, Li et al. (2018a) learned a regres-
sion network that estimates surface appearance with spatially
varying albedo, roughness, normal variations, together with a ho-
mogeneous specular coefficient determined by the automatically
classified material type. Deschaintre et al. (2018) shared a sim-
ilar assumption of the input, while outputting spatially varying
albedo, specular, roughness and normal maps. One benefit of the
known dominating flash light is the known dominating specular
highlight, specifically, the local lit flash light produces one strong
highlight lobe due to the spatially varying incident light direction
for different spatial pixels. In order to better analyze those spatial
varying information, different mechanisms are designed to aid
the network. Li et al. (2018a) included a radial coordinate image
that correlated to the spatially varying incident light direction as
an auxiliary input to the neural network. Deschaintre et al. (2018)
designed a global features network that gathers the spatially
varying information, processed into global features, then feedback
to the regular convolutional network on every spatial pixel. The
knowledge of the collocated lighting condition also enables using
the rendering process as a supervision. Both methods leverage
the rendering in their training. We will discuss the rendering loss
details in Section 4.

Li et al. (2018b) further extended such regression approach
for estimating both the spatially varying surface reflectance and
the geometry shape from a single input image lit by environ-
ment map and dominating collocated flashlight. To better handle
spatially varying global features, Li et al. (2018b) designed their
neural network and ensured the final layer of their encoder has
a receptive field covering the whole input image. To further
enhance the capability of global reasoning and also increase the
capacity of the neural networks, Li et al. (2018b) also introduced a
cascaded estimation scheme. We will have an in-depth discussion
on the network structure design in Section 4.

The global illumination also has a stronger influence on objects
with complex geometry shapes rather than planar surfaces. In
order to account for global illumination effects during the train-
ing and evaluation while maintaining a reasonable computation
cost, Li et al. (2018b) trained a neural network to predict the
global illumination effects from direct illumination renderings.

All those deep appearance regression methods take input un-
der predefined lighting condition, thus the capturing process is
fixed and determined by the assumption of the input. The learned
neural network represents both the fitting process and the re-
producing process and trained in an end-to-end manner, without
explicitly modeling of the latent space.

Kim et al. (2017) proposed a solution to estimate homoge-
neous BRDF from multiple view observations. Although their
method supports arbitrary measurements, all the measurements
are projected onto a unit sphere, and the neural network takes
this projected measurement as input. Thus in the neural net-
work’s perspective, the capturing process is still fixed and the
fully connected network is performing the fitting process to the
parametric BRDF.

3.2. Deep appearance reconstruction

Previously discussed deep appearance regression methods can
produce plausible results even with a single image input, how-
ever, in many cases, multiple measurements are needed to get

accurate reconstruction or distinguish between ambiguity cases.
The end-to-end trained encoder–decoder networks from those
regression based solutions are trained for one specific task with
predetermined input condition. Different numbers of input im-
ages essentially correspond to different regression tasks, it is not
practical to train a separate regression network for every possible
number of inputs. The key to resolve the problem is separating
the fitting and reproducing process and explicitly modeling the
latent space.

Following this idea, Gao et al. (2019) proposed a deep inverse
rendering framework, which supports an arbitrary number of
inputs. The precision of the estimated results varies from plau-
sible when the input images fail to capture all the reflectance
information, to accurate for large input sets. They design the
fitting process as an optimization process in the explicitly modeled
latent space. Instead of casting manually designed constraints,
the latent space, which is trained by an adapted autoencoder,
works as a learned constraint that exploits the prior distribution
of large SVBRDF dataset. In Fig. 3 we briefly compare the results
of deep appearance regression (Li et al., 2018a; Deschaintre et al.,
2018) and deep appearance reconstruction (Gao et al., 2019).
Showing the benefit of latent space optimization and additional
measurements.

Deschaintre et al. (2019) also proposed a learning based
SVBRDF estimation system that supports arbitrary number of
input. Instead of representing the fitting process with optimiza-
tion, they followed the regression approach that trains a neural
network to extract latent features from each individual input
image, and assemble them via an max pooling. The advantage
of this design is the neural network does not need light and
view point information, however, at the same time limited its
capability to leverage the light and view information to form a
more constrictive optimization system.

For surfaces with stationary textures, Aittala et al. (2016) pro-
posed a method that models the SVBRDF and normal variations
from a single flash lit image. Instead of explicitly formulating a
latent space for optimization, they directly optimize the material
maps with a CNN based constraint. They avoid explicit point-to-
point correspondence but trained a CNN-based texture descriptor,
and use the descriptor as a reference to guide the material map
optimization.

The Deep Lambertian Network (Tang et al., 2012) combines
deep belief network and Lambertian surface reflection yielding
a multilayer generative model with the albedo, surface normal
and light source direction as latent variables. By explicitly in-
cluding the Lambertian shading model, Deep Lambertian Network
enables the generation of images that follow the Lambertian
reflection from a trainable network.

3.3. Appearance modeling with learned lighting conditions

All the works discussed above have a predefined capturing
process in their deep appearance modeling pipeline, since those
methods are designed for casual user capture, with minimal re-
quirements on the acquisition setup. For professional acquisition
with dedicated devices, it is possible to find the optimal capture
setup for one specific task.

Xu et al. (2018) proposed an image-based relighting method
that can synthesize scene appearance under novel illuminations.
Similar to deep surface appearance regression, their deep relight-
ing network represents the fitting and reproducing process, which
takes five images captured under predefined directional lights,
together with the output light direction as inputs, then output
the final relit image.

The predefined light directions of inputs are optimized for
their relighting network. To find the optimal lighting setup, Xu
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Fig. 3. Comparing deep surface reflectance modeling with similar setup. Deep appearance regression methods Deschaintre et al. (2018) and Li et al. (2018a) produces
plausible results with only a single input image. Optimization based method Gao et al. (2019) can further improve the quality of the results by optimizing in the
explicitly modeled latent space, given exactly the same single input. With an increasing number of input photographs Gao et al. (2019) show an improvement in
accuracy, yielding a more accurate reconstruction given sufficient number of inputs. Gao et al. (2019).

et al. (2018) designed a trainable component called ‘‘sample-
net’’ which represents the capturing process. The essence of the
sample-net is a projection matrix that projects the light transport
of a scene into relit results under certain lighting patterns. If one
can find the optimal sample-net, the corresponding light pattern
of the optimal sample-net will be the optimal lighting condition.

The ‘‘sample-net’’ is trained together with the relighting net-
work, where the goal for the relighting net is to accurately re-
produce the relit results based on the input provided by the
sample-net; at the same time, the sample-net is also trained to
provide the optimal input for the relighting net. They also cast ad-
ditional constraints to the sample-net, thus after the training, the
sample-net will represent a projection matrix that corresponding
to directional light sources, thus the resulting optimal lighting
pattern is easy to be realized by their capture setup.

For surface reflectance acquisition, Kang et al. (2018) proposed
a learning based framework that automatically learns the opti-
mal lighting patterns for efficient anisotropic SVBRDF acquisition.
They model the whole deep appearance modeling pipeline with
a trainable asymmetric deep autoencoder. The encoder part is a
non-negative, linear encoder corresponding to the capturing pro-
cess, their optimized lighting patterns used in physical acquisition
directly project the BRDF at each surface point into a latent code.
The latent code can then be decoded via a non-linear neural
network with complete BRDF information, and fitted into BRDFs.

Kang et al. (2018) designed the encoder as a trainable projec-
tion matrix. The acquisition device supports arbitrary complex
lighting patterns that can be displayed by its LED panel, as a
result, unlike (Xu et al., 2018) that require the matrix corre-
sponding to a set of directional light sources, in Kang et al.
(2018) the only constraint for the projection matrix is the non-
negative weight should be within the range that their LEDs can
display. The decoder is designed as a series of fully connected
layers with leakyReLU activations, the input of the decoder is the
measured ‘projected’ latent code from one surface point under
predefined LED patterns, and the decoded output is a complete
set of measurement for every LED of their capture device. The
decoded compete measurement can be fitted to a physical based
BRDF model

4. Discuss of deep appearance modeling from amachine learn-
ing perspective

In the previous section, we discussed deep surface appear-
ance modeling works from the appearance modeling pipeline’s
perspective. In this section, we will discuss several important ma-
chine learning topics that essential for deep appearance. A taxon-
omy of those works following the machine learning perspective
can be found in Table 2.
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Table 1
Taxonomy of deep appearance modeling works from a computer graphics perspective, details for each work are explained in Section 3.
Method Modeling target Num. input Lighting setup

Li et al. (2017) SVBRDF (planar) 1 Env.
Deschaintre et al. (2018) SVBRDF (planar) 1 Env.+Flash
Li et al. (2018a) SVBRDF (planar) 1 Env.+Flash
Kang et al. (2018) Anisotropic SVBRDF (planar) Fixed LED panel
Ye et al. (2018) SVBRDF (planar) 1 Env.
Li et al. (2018b) SVBRDF + Shape 1 Env.+Flash
Gao et al. (2019) SVBRDF (planar) Arbitrary Env.+Flash
Deschaintre et al. (2019) SVBRDF (planar) Arbitrary Env.+Flash

Table 2
Taxonomy of deep appearance modeling works from a machine learning perspective, details for each work are explained in Section 4.
Method Network design Loss function Training scheme

Li et al. (2017) U-Net L2 map Self-augmented
Deschaintre et al. (2018) U-Net + global feature net Render Supervised
Li et al. (2018a) U-Net + axillary input + CRF Render + L2 map Supervised
Kang et al. (2018) Linear encoder + FC decoder L2 output value Supervised
Xu et al. (2018) U-Net L2 output value Supervised
Ye et al. (2018) U-Net L2 map Self-augmented
Li et al. (2018b) Cascaded CNN Render + L2 map Per stage, Supervised
Gao et al. (2019) Encoder–decoder Render + L1 map Supervised
Deschaintre et al. (2019) U-Net+CNN decoder Render + L1 map Supervised

4.1. Network design

For most appearance regression tasks, the input and output are
in the same spatial domain with pixel-to-pixel correspondence,
as a result, encoder–decoder CNN with skip connections is a
common choice (Li et al., 2017; Ye et al., 2018; Li et al., 2018a;
Deschaintre et al., 2018; Li et al., 2018b; Xu et al., 2018). The
encoding and decoding process of the encoder–decoder structure
provides a large reception field for the latent feature maps, while
the skip link connections preserve rich spatial details.

Deschaintre et al. (2018) designed a Global Features Network
which pools features from the whole image and computes a
global feature set, then the global feature set is added back onto
each feature map as basis. Such design provides a very large
receptive field, leads to better preservation of the global infor-
mation and removes artifacts caused by the strong spot highlight
in the input image. Fig. 4 shows the effect of the global feature
network design.

The encoder–decoder structure in Kang et al. (2018) is not
symmetrical, its encoder is realized via physical measurements,
and the mapped latent space does not have any correspondence
to the output, as a result, Kang et al. (2018) designed a series of
fully connected network to decode from its latent space.

To find an optimal lighting condition, the mapping from light-
ing patterns to the final rendered results needs to be modeled
as a trainable operation. Thank to the linear properties of the
light transport, such process can be modeled as a matrix mul-
tiplication (Xu et al., 2018; Kang et al., 2018), and any physical
constraints can be directly applied to the matrix element values
as a loss function.

Batch normalization or instant normalization is often used
to stable the training process. Gao et al. (2019) in their paper
discussed how different choices of batch normalization affect the
latent space. As illustrated in Fig. 5, their result shows that, with-
out batch normalization, the reconstruction result will be noisy;
and using batch normalization will lead to blurred results. They
designed a latent space smooth constraint to further constraint
the latent space, resulting sharp reconstruction without noise.

4.2. Loss function

Aside from traditional L1 and L2 loss over the output, since
each different component of the output material maps has unique

Fig. 4. Effect of the global feature network. Deschaintre et al. (2018) trained U-
Net neural network without the global feature network and compared with their
global feature network design. The U-Net failed to produce a constant image (c)
when trained to output the average color of the input (b), and producing artifacts
when estimating SVBRDFs (f), while global feature network design solved such
problem, producing artifacts free results (d, g) (Deschaintre et al., 2018).

physical meanings, one can render an image based on those
material maps and use the rendering error as a loss function (De-
schaintre et al., 2018; Li et al., 2018a). Deschaintre et al. (2018) in
their paper compared the neural network trained with and with-
out rendering loss. The neural network trained with rendering
loss produces sharper results, especially on the normal map. More
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Fig. 5. Effect of batch normalization. Gao et al. (2019) test the effect of
batch normalization in their auto-encoder design. The auto-encoder without
batch normalization produces noisy results (2nd row), on the contrary, the
auto-encoder with batch normalization after every activation layer generates
smoothed results (3nd row). Their designed auto-encoder with single batch
normalization layer together with the space smoothness design produce the
most plausible result (Gao et al., 2019).

Fig. 6. Effect of render loss and map loss. The neural network trained only with
map loss produces sharper material maps, however the rendering results do not
fit the expected appearance. Training with the rendering loss solves the problem
and the final appearance matches the target well, but produces blurred maps.
Combining the map loss and rendering loss produces balanced between map
details and render accuracy (Gao et al., 2019).

importantly, L1 loss produces maps that do not reproduce the ap-
pearance of the ground truth, while the rendering loss produces
a more faithful reproduction of the ground truth appearance.

Gao et al. (2019) also confirm the effect of render loss, and
propose a combination of map loss and rendering loss which can
preserve details in the rendering results as well as each individual
material maps. Fig. 6 shows the results of optimizing an SVBRDF
using an auto-encoder trained with different loss functions (Gao
et al., 2019).

4.3. Training data

For single point BRDF, random sampling over parametric
BRDFs could act as a good training set. Kang et al. (2018) ran-
domly generate Anisotropic GGX BRDFs for their training dataset.

Fig. 7. Example of data augmentation. Perturbing parameters to generate differ-
ent variations (top row); Blending different SVBRDFs (bottom row) (Deschaintre
et al., 2018).

Li et al. (2017) also performed a synthetic test on isotropic Ward
models.

For spatially varying materials, Li et al. (2017) collected a small
scale manually crafted SVBRDF to bootstrap their self-augmented
training. Deschaintre et al. (2018) collected their training data
from Algorithmic Substance Share (Allegorithmic, 2018), a large
collection of artist manually crafted SVBRDFs. Li et al. (2018a,b)
collect their SVBRDF data from Adobe Stock (Allegorithmic, 2019).
The original data of Li et al. (2017) and augmented training
and test data of Deschaintre et al. (2018) are publicly available
for future research, while the adobe SVBRDF dataset requires a
commercial license.

Augmentation is essential for enhancing the coverage and
diversity of the training data. Deschaintre et al. (2018) introduced
four types of augmentation (see Fig. 7). They first randomly
perturb the important parameters of the procedural SVBRDFs.
Second, they generate convex combinations of random pairs of
SVBRDFs. They then include random scaling and orientations, and
finally apply a random crop to get the final training data. Li
et al. (2018a) also augment their training data with random crop,
rotation, and flip operations.

For geometry shapes, Li et al. (2018b) and Xu et al. (2018) use
a procedural way to generate complex shapes and scenes. They
first generate random primitive shapes (cube, ellipsoid, cylinder,
box, and L-shape) enhanced by randomly generated height maps.
Then for each scene, they randomly select 1 to 5 primitive shapes
and randomly combine them. The augmented SVBRDF patches (Li
et al., 2018a) are randomly applied onto those primitive shapes.

4.4. Training scheme

Unlike other machine learning tasks, the underlying image for-
mation process is well known for appearance modeling. Utilizing
the known rendering equation leads to many efficient training
schemes.

Li et al. (2017) proposed a self-augmentation training strategy
that combines a small labeled training set of measured SVBRDFs
and a large unlabeled set of regular photographs of spatially-
varying materials for learning a regression network for surface
appearance estimation. Such scheme is further improved by Ye
et al. (2018), remove the requirement of labeled training data,
replace it with synthetically generated SVBRDFs based on neural
texture synthesis.

Based on the fact that the re-rendered image from the es-
timated SVBRDF and lighting should match the input, Li et al.
(2018b) designed a cascading network. The render error between
the input and the image rendered by the previous stage estima-
tions can be used as additional input for the next stage network,
indicating the distribution of the error, guiding the refinement on
those regions, progressively improving the estimation results.
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5. Research opportunities and future directions

From the computer graphics perspective, there are many open
opportunities on applying deep learning to complex lighting ef-
fects currently solved with traditional data-driven approaches;
Learning based appearance model for rendering is also another
interesting future direction. From the machine learning point of
view, finding a generic latent space, creating large scale training
datasets and developing semi-supervised and unsupervised train-
ing schemes for appearance modeling would be important future
research directions.

5.1. Modeling complex lighting effects

Deep learning has shown its capability in many appearance
modeling tasks, especially on surface reflectance modeling that
covered in this survey. On the other hand, there are still many
appearance modeling tasks that have not been tackled in a deep
learning way, which opens new opportunists.

Light transport decomposition has many applications in com-
puter graphics, such as scene editing and inverse global illumina-
tion. Xu et al. made some early attempts on this direction in their
learning based relighting work (Xu et al., 2018). They designed
two neural networks for the relighting task, one of the designed
networks do have the capability to predict different components
(visibility map, direct and global illumination components) of
the relighted image, archiving marginal improvement on the
prediction results. It is possible to extend this approach for light
transport decomposition, or support advanced light transport
editing (Dong et al., 2015).

Materials exhibit strong diffraction effects such as holographic
surfaces (Toisoul et al., 2018) that could be one potential topic for
future deep appearance modeling. Similar to traditional surface
reflectance modeling, the key to inferring the underlying holo-
graphic pattern is finding corresponding repeated patterns on the
measured input. Which can be archived by deep analysis (Aittala
et al., 2016).

Current works on multi-layer material modeling still follow
a traditional optimization based approach, with more in-depth
understanding of the multi-layer light transport (Jakob et al.,
2014a; Zeltner and Jakob, 2018) and efficient rendering (Belcour,
2018), large collection of training dataset can be generated, laying
down the foundation for future deep learning based solutions.

5.2. Learning based model for rendering

Currently, the final output of the deep learning based surface
reflectance estimation methods is mainly classical physical based
appearance models, such as Cook–Torrance (Cook and Torrance,
1982) or GGX (Walter et al., 2007) BRDF models. Those physical
based models render friendly and represent a wide range of real-
world appearances. On the other hand, it is unclear whether
the parameter settings of those physical based appearance mod-
els are ideal output for a deep learning system. Learning based
appearance model for rendering, at the same time support back-
propagation, can seamlessly integrate with existing deep learning
framework. Such learned rendering model, optimized end-to-
end with other learning based components, potentially can fur-
ther improve the performance of the deep appearance modeling
works.

The decoder part of the relight-net proposed in Xu et al.
(2018) can be regarded as an early attempt in this direction. Their
encoder can synthesize one relit image with the lighting direction
as an input parameter, thus their decoder can be regarded as
a neural renderer. However, due to their network design, such
as the skip link structures, the output relit image is not fully

determined by the latent code, thus one cannot render a new
image with only a latent code, forbidding using only the decoder
as a separated neural render model.

On searching better parametric BRDF models, Brady et al.
(2014) proposed an evolution programming scheme and found
several learned parametric models. It is also possible to explore in
this direction that designs a learning friendly appearance model.

5.3. Generic latent space

Latent space is one of the key components in data-driven
appearance modeling. The latent space determines the range of
appearance that can be well modeled and affects the encoder
and decoder design. In classical data-driven appearance modeling
works, the latent space is always explicitly defined usually task
independent. For example, the linear basis model of SVBRDF
can be applied to SVBRDF acquisition, editing or even efficient
rendering.

However, the majority of existing deep appearance modeling
works learn a latent space specific for their task. Furthermore,
deep appearance regression works do not explicitly model the
latent space, with the fitting and reproducing process represented
by a single neural network. In order to ensure the encoder can be
realized by physical measurements, Kang et al. (2018) designed a
special latent space that tailored for their device setup. Recently,
Gao et al. (2019) begin to explore explicitly learning a latent space
that supports arbitrary number of input measurements with a
collocated flashlight. Along this track, learning a generic latent
space that supports many appearance modeling tasks would be
an interesting and useful application.

In the computer vision research communities, deep neural
networks have been widely used to learn a generic latent space.
The backbone feature extraction networks trained on large scale
datasets such as ImageNet (Russakovsky et al., 2015) or MS-
COCO (Lin et al., 2014) can be used for many computer vision
task, without retraining. Whether there is an equivalent approach
in appearance modeling still remains an open question.

5.4. Large scale appearance dataset

Data is always at the center of deep appearance modeling.
However, there is no well designed large scale public dataset for
deep appearance modeling. Different works are trained, tested
and validated on different datasets, usually generated by the au-
thor following their own way of augmentation. The difference in
the dataset setup and augmentation makes it difficult to compare
different deep appearance learning approaches.

The open surfaces dataset (Bell et al., 2013, 2015) and the
dataset prepared by Li et al. (2017), Deschaintre et al. (2018)
could be a good starting point on this direction. In the future,
building a large scale high quality public dataset, such as Ima-
geNet (Russakovsky et al., 2015) in computer vision research field,
would lay down a very important foundation for the appearance
modeling field, and such dataset will serve as a powerful engine
drives generations after generations of new research works on
deep appearance modeling.

5.5. Semi-supervised and unsupervised training

Like any other learning based solution, deep appearance mod-
eling is craving for large scale high quality datasets, insufficient
training data will lead to reduced generality or over-fitting. Creat-
ing high quality large scale dataset would definitely pave the way
for better learning based solutions. At the same time, designing
novel training schemes that support semi-supervised learning or
fully unsupervised learning would be also beneficial.
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Li et al. (2017) proposed the self-augmented training scheme,
which combines a small set of labeled SVBRDF data and a large
collection of unlabeled rendered image to train a surface re-
flectance regression network. This scheme can be further ex-
tended to be fully unsupervised (Ye et al., 2018), where the
labeled SVBRDF dataset can be replaced by synthetically aug-
mented textures.

Combining the existing wisdom of data augmentation (Xu
et al., 2018; Deschaintre et al., 2018) and self-supervised training
would potentially lead to more efficient semi-supervised or even
fully unsupervised training schemes that can benefit many deep
appearance modeling applications.
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