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Figure 1: Examples of Generative Adversarial Networks (GANs) learned from user-curated training sets of (a) rough stone textures, (b)
rusted metal textures, (c) images of bedrooms with twin beds, and (d) portraits of happy faces. Each of these GANs are trained on datasets
curated using our interactive system in approximately 12 (stone) to 35 (face) minutes starting from a larger more general dataset of stones,
metals, bedrooms, and faces respectively.

Abstract

We present a novel interactive learning-based method for curating datasets using user-defined criteria for training and refining
Generative Adversarial Networks. We employ a novel batch-mode active learning strategy to progressively select small batches
of candidate exemplars for which the user is asked to indicate whether they match the, possibly subjective, selection criteria.
After each batch, a classifier that models the user’s intent is refined and subsequently used to select the next batch of candidates.
After the selection process ends, the final classifier, trained with limited but adaptively selected training data, is used to sift
through the large collection of input exemplars to extract a sufficiently large subset for training or refining the generative model
that matches the user’s selection criteria. A key distinguishing feature of our system is that we do not assume that the user can
always make a firm binary decision (i.e., “meets” or “does not meet” the selection criteria) for each candidate exemplar, and
we allow the user to label an exemplar as “undecided”. We rely on a non-binary query-by-committee strategy to distinguish
between the user’s uncertainty and the trained classifier’s uncertainty, and develop a novel disagreement distance metric to
encourage a diverse candidate set. In addition, a number of optimization strategies are employed to achieve an interactive
experience. We demonstrate our interactive curation system on several applications related to training or refining generative
models: training a Generative Adversarial Network that meets a user-defined criteria, adjusting the output distribution of an
existing generative model, and removing unwanted samples from a generative model.

CCS Concepts
• Computing methodologies → Active learning settings; Graphics systems and interfaces; •Human-centered computing →
Interactive systems and tools;
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1. Introduction

One of the grand goals of computer graphics is to support users
in generating novel imagery. Often this process focuses on creat-
ing a unique exemplar such as a texture, portrait, or scene. How-
ever, creating intricate and detailed visuals from scratch is time-
consuming and requires skill and practice. To alleviate this diffi-
culty, artists often start from an exemplar or borrow parts from a
set of exemplars. This idea has resulted in many example-driven
authoring aids such as texture synthesis [RDDM17], Poisson im-
age editing [PGB03], etc. Generative models take this paradigm a
step further, and aim to not just create a single exemplar, but to
provide an automated process for generating any number of exem-
plars that meet a set of user-defined criteria. Recent advances in
deep learning have enabled users to specify a generative model by
providing a (large) set of exemplars. Such deep learning based ap-
proaches can be seen as learning a distribution (characterized by
the training dataset), and generating an exemplar can be seen as
drawing a sample from the learned distribution. A popular class
of deep learning based generative strategies are Generative Adver-
sarial Networks (GANs) [GPAM∗14], which can learn to generate
high quality samples with impressive accuracy from just an unla-
beled training set of exemplars. However, the accuracy and quality
of the learned distribution greatly depends on the characteristics of
the training dataset. While gathering a general non-discriminative
training dataset can be automated via web crawlers with relatively
little effort, sifting through the collected data to eliminate unsuited
and corrupted exemplars and/or select exemplars that meet user-
defined criteria is arduous and time-consuming.

In this paper, we endeavor to empower the user to easily cu-
rate training datasets such that the resulting GANs better match the
users’ expectations. We a priori assume that the user has access to
a large general dataset of possible training data; we do not assume
this database has been pre-screened nor do we assume that it only
contains the target distribution. By enabling the user to tailor the
training dataset, we empower the user to indirectly control the out-
put distribution of the generative model. The source from which
the user selects the training set does not need to be in the form of
an image dataset, and it can also be in the form of samples drawn
from another, more general, generative model, effectively allow-
ing the user to refine the output distribution of an existing gener-
ative model. However, the user’s desired output distribution might
be difficult to explicitly express concisely in “rules” or they might
be subjective. Hence, it will be essential for the user to directly
participate in the selection process of the training dataset.

We propose an interactive system for curating datasets driven
by, possibly subjective, user-defined criteria for training or refining
generative models. At its core, our system regresses a classifier that
can discriminate desired from undesired training exemplars. Learn-
ing such a classifier requires knowledge of the user’s preferences in
the form of labeled exemplars, which are obtained via a novel inter-
active curation framework that builds on active learning [Set10] to
minimize user labeling effort. Typically, active learning proceeds in
an iterative fashion where in each round, the user is asked to label
a small set of the candidates which are selected based on informa-
tion learned from previously labeled candidates. Once a classifier is
obtained, we filter the large input dataset and extract the exemplars

that match the user’s intent, which are then subsequently used to
train or refine the generative model.

A key design constraint in our interactive system is that we
rely on a physical user’s feedback. This has two important con-
sequences. First, due to the high training cost, deep neural network
classifiers are best refined with batches of data as opposed to exem-
plar by exemplar as in classic (non-neural network) active learn-
ing. Consequently, we will rely on batch-mode active learning and
present a batch of candidates to the user to label. The candidates
in each batch are selected based on each candidate’s potential to
improve the classifier. However, a too large batch will be too time-
consuming and too overwhelming for the user to label in one pass.
Hence, a smaller batch size is more amendable for users to process.
However, the smaller the batch of candidates, the more important
the diversity among the candidates becomes in addition to their po-
tential for improving the classifier. In this paper we encourage a di-
verse set of candidates using a novel disagreement metric suited for
small batches. A second consequence is that we cannot assume that
the user is a perfect oracle that can always make a binary decision
(i.e., “meets” or “does not meet” the selection criteria) for each pre-
sented candidate, either because it is a difficult case (i.e., the user
is uncertain) or because the user does not care whether the sample
is included or not in the training set and thus output distribution of
the generator. We therefore allow the user to not only mark posi-
tive examples (i.e., that meet the selection criteria), but also mark
samples as “undecided”. As a consequence, care needs to be taken
when selecting new candidates to be presented to the user. We will
employ a novel non-binary query-by-committee strategy [SOS92]
to differentiate between the uncertainty of the user’s intent versus
the uncertainty of the classifier.

We demonstrate the efficacy of our method on a number of dif-
ferent datasets and selection criteria, and we propose four applica-
tions that employ our interactive curation system: (1) modeling a
targeted GAN based on user-defined criteria, (2) cleaning training
data, (3) changing the density of the learned distribution modeled
by a GAN, and (4) removing unwanted exemplars from a GAN.

In summary, our contributions are:

1. An interactive system for curating datasets;
2. four applications of our system to aid in training, correcting, and

refining generative models; and
3. a novel non-binary batch-based query-by-committee active

learning method for classification that is more broadly appli-
cable than curating training data for GANs.

2. Related Work

To the best of our knowledge, our work is the first to tackle the
problem of interactively curating datasets for training or refining
deep generative models with complex distributions. We will there-
fore focus our discussion of related work on five topics that share
common traits with our work: generative adversarial networks, tex-
ture synthesis with deep generative models, interactive design with
deep generative models, example-based procedural modeling, and
active deep learning.

Generative Adversarial Networks Generative Adversarial Net-
works (GANs) [ACB17, GPAM∗14, RMC15] are a type of deep
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neural network architecture that consists of a generator network and
a discriminator network. The generator provides a mapping from an
(random) input vector to a learned distribution, making it ideally
suited for generating (synthesizing) random samples from the dis-
tribution (i.e., evaluating the generator for a random input vector).
The role of the discriminator is to judge whether a sample belongs
to the distribution or not. A key distinguishing feature of GANs is
that both networks, the generator and discriminator, are trained in
competition: each network tries to outdo the other. To successfully
train a GAN a large collection of samples from the input distribu-
tion is needed. While GANs do not require explicit labeling of the
training data, it makes the implicit labeling assumption that all the
training data belong to the target distribution. For truly unlabeled
training data, gathering such a training set is labor intensive. Our
work is complementary to existing research on GANs; we focus on
accelerating and simplifying the process for selecting an appropri-
ate set of training samples.

Texture Synthesis with Deep Generative Models A natural
application of GANs is texture synthesis. Zhou et al. [ZZB∗18]
use a GAN to double the resolution of a non-stationary texture.
Bergmann et al. [BJV17] employ a fully convolutional GAN to
learn the texture manifold from a single high resolution image or
from a dataset. Jetchev et al. [JBS17] use a GAN to learn mosaic
images based on a guide image. Related to this, is the work of Früh-
stück et al. [FAW19] who combine texture patches generated by a
GAN in a seamless fashion. However, all these methods either as-
sume that a single exemplar or a dataset has been selected by the
user. The proposed method is complementary to these methods, and
the resulting GANs trained from curated training sets can be em-
ployed in a texture synthesis framework.

Interactive Design with Generative Models Generative mod-
els have also been employed to aid, among others, in editing
and authoring natural images [ZKSE16], faces [PHS∗18], ter-
rains [GDG∗17], and buildings [KGS∗18]. These methods employ
a GAN to design a single instance and the generative model is used
to ensure that the edits remain plausible. Our method in contrast
aims to empower the user to steer the output distribution of a gen-
erative models via its training data rather than manipulating single
instances. However, the resulting GANs can afterward still be em-
ployed with GAN-based editing tools.

Example-based Procedural Modeling Another class of gener-
ative models are procedural methods. However, procedural mod-
els are notoriously difficult to create. Lagae et al. [LVLD10] in-
troduced an example-based solution for multi-resolution noise for
isotropic stochastic textures. Galerne et al. [GLLD12] use Gaus-
sian example textures to control Gabor noise. Both methods take a
single input image as an example, and are more akin to texture syn-
thesis; in contrast our goal is to curate a dataset of many exemplars
used to train generative models that sample complex distributions
beyond textures.

Active Deep Learning Our work builds on results from active
learning that aims to learn a task at higher accuracy with fewer la-
beled training data. Active learning incrementally grows a small
subset of labeled training data by querying an oracle to label a
candidate training sample. We refer to Settles et al. [Set10] for an
extensive overview of (pre-deep learning) active learning methods.

Recently, researchers have started looking at extending active learn-
ing to deep learning [WZL∗17, SS18, SED19]. In contrast to many
classic active learning strategies that grow the set of labeled train-
ing data one by one, due to the high training cost, deep networks
are best trained in batches.

Our work differs to prior work in two critical aspects related to
including a real human in the loop. First, including a human as
oracle restricts us practically to small batch sizes that can be pro-
cessed effectively by the user (in contrast, Sinha et al. [SED19] use
batch sizes of 5% (∼ 1000s of samples) of the total training set).
For small batch sizes it is not only the informativeness of each can-
didate in the selected batch that is important, but also the diversity
of the candidate set is critical (i.e., how different are the different
candidates in each batch). We introduce a novel metric to select a
diverse set of candidates. Second, prior work assumed a, possibly
noisy, oracle that can provide a decisive label. In contrast, we ac-
count for cases where the oracle (i.e., user) is indecisive and cannot
assign a label to a candidate. This implies that we cannot simply
use the uncertainty of the classifier as a sampling guide (e.g., as
in [WZL∗17]). Instead we build on Query-by-Committee [SOS92]
(also named ensembles in the context of deep learning), which has
been shown to be a robust selection algorithm for active deep learn-
ing [BGNK18]. However, in contrast to Beluch et al. [BGNK18] we
also take diversity in account.

Similar to our work, Zhu et al. [ZB17] also combine GANs and
active learning, and use a GAN to generate new samples to train a
classifier. Our work is in some sense the inverse; we actively learn
a classifier to filter exemplars for training a GAN.

3. Interactive Curation by Intent Learning

Our interactive system for curating datasets for training or refining
GANs builds on the idea that the training set should reflect the in-
tent of the user’s preferences. However, letting the user manually
mark the whole training set is labor intensive and cumbersome. In-
stead, we endeavor to learn the user’s intent interactively. We will
model the user’s intent as a convolutional neural classifier with
fully connected layers that outputs the probability that the input
exemplar meets the user’s selection criteria. We train this classi-
fier in an iterative fashion where we alternate between querying the
user’s selection criteria on exemplars to refine the classifier, and se-
lecting novel candidates for the user to label based on the current
classifier’s state. Once the user’s intent is modeled in the form of
a classifier, we can then filter a set of candidate training exemplars
for the instances that match the user’s selection criteria, and use
these to train or refine a GAN.

Our interactive system for learning the users’ intent consists of
two parts: (1) the interactive interface for querying the user’s intent
(subsection 3.1), and (2) the adaptive selection of candidates used
in each round of the interactive system for refining the classifier
(subsection 3.2). Our key concern in designing the interactive sys-
tem is that we want to minimize the user’s labeling effort while at
the same time maximize the relevant information for learning the
user’s intent.
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Figure 2: Example of the interactive user interface shown for the
2nd round of selecting “happy faces” as a selection criterion. At
each round the user marks exemplars that “meet” (3), “do not
meet” (7) the selection criteria, and exemplars for which the user
cannot decide (?).

3.1. Interactive Interface

Our interactive interface is simple but intuitive (Figure 2). A small
set of 20 exemplars are presented to the user for labeling (i.e.,
marking exemplars that meet the user’s selection criteria). The se-
lection criteria can range from simple conditions such as “only
wood textures” to more complex criteria such as “faces that ap-
pear happy”. However, for many criteria, the user’s intent might
be subjective with soft boundaries (i.e., there are many expressions
between “happy” and “not happy”), or the user is selecting a subset
from a continuous range of criteria (e.g., “straight” versus “curved”
wood grain), or the user might not care whether a particular exem-
plar is included or not. For such cases, the user might find it difficult
to decide whether a particular exemplar meets the envisioned selec-
tion criteria. Therefore, in addition to marking positive exemplars
and negative exemplars, we also allow the user to mark an exem-
plar as “undecided”. We will show in section 5 that adding such a
third category improves the quality and efficiency of our interactive
curation strategy.

3.2. Adaptive Candidate Selection

We aim to present the user with a small set of candidates that, when
labeled, improves the accuracy of the classifier the most. This im-
plies that we should sample the exemplars in the regions where the
decision of the classifier is least certain.

Query-by-Committee A naive strategy for selecting a batch of
candidates for the user to label would be to sample exemplars from
the input set for which the classifier yields an approximately 50%
probability that it matches the user’s intent. However, this prob-
ability does not express the (un)certainty of the classifier, it only
expresses the user’s uncertainty. Hence, little is gained by asking
the user again to label an exemplar for which the user has trouble
making a decision.

Instead, we will approximate the uncertainty of the classifier by
adapting a classic method from active learning, namely Query-by-
Committee (QBC) [SOS92]. The overall idea is to train multiple

classifiers, each initialized differently, over different training data
sequences. Essentially, we aim to compel the different classifiers
to converge to different local minima (if present). These multiple
classifiers form a committee and we select the candidate exemplars
presented to user based on the output of each committee member
(i.e., classifier). Intuitively, if the committee unanimously agrees on
a certain exemplar, then this indicates that that exemplar is likely
reliably classified. Conversely, if the committee disagrees, then it
indicates that we have found an unstable classification that can eas-
ily be flipped by making minor adjustments to the training. Hence,
a (conclusive) judgment by the user will strengthen the quality of
the classifiers for this exemplar (i.e., make the decisions more unan-
imous).

Disagreement Measure Our classifiers are trained to output a
probability of whether the input meets the user’s intent. As in clas-
sic Query-by-Committee, we could convert this probability to a
binary decision to measure the disagreement. However, the con-
tinuous probability values (e.g., the user’s degree of uncertainty)
provide information too. We therefore use KL-divergence [KL51]
to measure the degree of disagreement [MN98]. Given an exem-
plar x, we denote the output of the i-th classifier as Pi(x). The
consensus, or average, probability of the committee is denoted as
Pc(x) = 1

N ∑
N
i=1 Pi(x), with N the size of the committee (i.e., the

number of classifiers). The disagreement between the committee
members can then be measured by:

D(x) =
N

∑
i=1

dKL(Pi(x)||Pc(x)), (1)

where dKL(X ||Y ) is the KL-divergence.

Disagreement Distance Our interactive system presents the user
with a number of candidates in batches instead of a single exemplar
with large disagreement. The reason is twofold. First, it will be
easier for a user to decide whether an exemplar follows their intent
if it is observed in relation to other exemplars. Second, our goal
is to create an interactive system. Refining the classifier is a time
consuming operation. Adding exemplar by exemplar as in many
active learning methods would be computationally too expensive.
Adding a batch of exemplars (e.g., 20 as in our implementation)
distributes the cost of refinement over multiple exemplars.

Care should be taken when selecting candidate exemplars. Ide-
ally, each exemplar, when labeled by the user, should maximize the
potential of improving the classifier. While for a single exemplar,
selecting a sample with largest disagreement (Equation 1) achieves
this goal. However, when working in batches, then not only should
these candidate exemplars be selected with respect to the previ-
ously labeled data (i.e., disagreement), but also to the current set of
candidate exemplars (i.e., diversity). If we are to only select based
on disagreement, then two exemplars with similar disagreement are
likely to contribute the same cues to the classifier. Hence, we want
to maximize the minimum variance in disagreement between the
exemplars:

V (x) = min
xi∈S

dc(x,xi), (2)

where S represents the set of exemplars already labeled by the user
and the candidates already selected in the current round respec-
tively. dc(·, ·) expresses the difference in disagreement between two
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exemplars, which we define as:

dc(x0,x1) =
N

∑
i=1

(Pi(x0)−Pi(x1))
2. (3)

Candidate Selection Our selection procedure is a two step pro-
cess. We first randomly sample a large set T of Xt potential candi-
dates from the source database or source GAN. In our implementa-
tion we set Xt = 5,000. This initial sampling step serves two roles:
(1) to support using a continuous distribution (e.g., GAN) as input,
and (2) to speed up the selection process. Next, we progressively
select Xc = 20 exemplars that maximize the disagreement (Equa-
tion 1) and the variance (Equation 2); we normalize both measure-
ments and combine them via the harmonic mean:

Φ(x) =
(

∑i∈T D(xi)

D(x)
+

∑i∈T V (xi)

V (x)

)−1

(4)

The candidate that maximizes Equation 4 is added to the candidate
set S, and we repeat the process until Xc candidate exemplars are
added. Note that for an already selected candidate xa, the resulting
V (xa) = 0, and thus it will not be considered for selection again.

3.3. Implementation & Optimization

In addition to the above core algorithm, we apply a number of al-
gorithmic optimizations to further improve the interactivity and ro-
bustness of our dataset curation method.

Bootstrapping As long as the classifier is not trained with at least
one positive (i.e., matching the user’s intent), and one negative (i.e.,
not matching the user’s intent) exemplar, the classifier is not a good
oracle to drive the adaptive selection process. We therefore boot-
strap the design process by presenting the user Xc exemplars sam-
pled at random. Only when at least one positive and one negative
exemplar has been labeled by the user, do we switch to the adaptive
selection process.

Reference Exemplars In certain use cases, the user might want
to provide an exemplar that meets (or does not meet) the selection
criteria. Such guidance exemplars can trivially be included in the
labeled training set for the classifier. Note, these exemplars do not
need to be part of the source database or source GAN, making this
a convenient alternative for (speeding up) bootstrapping.

Parallelization of User Interaction and Candidate Selec-
tion Ideally we would like to execute the user interaction com-
ponent, training of the classifier, and the adaptive candidate selec-
tion component of the algorithm sequentially. However, classifier
training and the adaptive candidate selection are not instantaneous
and the user is left waiting for the classifier to be refined and for
the candidates to be selected. We therefore parallelize both interac-
tion and processing; we refine the classifier and generate the next
batch of candidate samples while the user is labeling the current
batch of candidates. As a consequence, the classifier training and
adaptive candidate selection do not use the labeled data from the
same round, and only rely on labeled data from prior rounds. We
found that this parallelization does not the impact the final accuracy
significantly, while at the same time significantly reducing the wait
time for the user.

Figure 3: Texture classifier network architecture.

Adaptive Determination of Xt In the first stage of the adaptive
selection process we randomly presample Xt exemplars from the
source distribution. This presampling enables continuous sources
such as GANs, while at the same time it also accelerates the selec-
tion process for a large source dataset. The number of exemplars
(i.e., Xt ) sampled can significantly impact the performance as well
as efficiency. If Xt is too large, then computing the candidate subset
can be costly. If Xt is too low, then the candidate selection might
not produce the best exemplars. However, exactly what number is
“too low” depends on the user’s selection criteria and the distribu-
tion of exemplars that meet this criteria in the source distribution.
For example, if only few samples match the user’s intent (or con-
versely, if very few do not match the user’s intent), then Xt needs
to be large enough so that such rare exemplars are considered for
presentation to the user. To alleviate this issue, we employ an adap-
tive sampling strategy that strikes a balance between accuracy and
speed. We start by first selecting Xt = 5,000 exemplars to obtain
an initial set of candidates. Next, we measure the disagreement of
the selected candidates, and if the KL divergence of any selected
candidate is smaller than 0.05, we discard the selected batch and
sample a new set of 5,000 samples, and repeat the process.

3.4. Architecture & Training

Classifier Network Our dataset curation methodology is flexible
and can be applied to different types of data. The exact architec-
ture of the classifier depends on the type of data and resolution in
the input dataset or GAN. For the results in this paper we use the
following data types and classifier architectures:

• For textures, we train, from scratch, a classifier network con-
sisting of a convolutional neural network with 1 fully connected
layer. Figure 3 summarizes the network architecture of the tex-
ture classifier.
• For generic images (e.g, of bedrooms as in Figure 1), we train a

2-layer fully connected network on top of an embedding consist-
ing of the feature map of pool5 from VGG16 [SZ15].
• For face images we train a 3-layer fully connected network

to output the classification on top of a pre-trained embed-
ding [SKP15]. Using a pre-trained embedding enables us to use
a smaller classification network, thereby improving interactivity
and accuracy.

During classifier training, we form batches with a balanced num-
ber of positive and negative exemplars. We do not use exemplars
marked by the user as “undecided” as these can be marked so for
different reasons: e.g., hard to decide, or exactly in the middle be-
tween positive and negative, etc.
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We implement our interactive curation system using Tensor-
flow [AAB∗15]. For each example, we use 4 classifiers to form
a committee, and train them efficiently in parallel on a 4-GPU con-
figuration using Adam [KB15], with a 10−4 learning rate; other
parameters are kept to their default settings. Each classifier is ini-
tialized with a different random seed, and for each iteration, a dif-
ferent training batch is generated for each classifier (albeit from the
same labeled set). In practice we use a batch size of 32 for all our
experiments and uniformly sample labeled exemplars. For all the
experiments, we train 2,500 iterations per round of interaction, ex-
cept for the initialization round where we train for 5,000 iterations.

Depending on the data source and type, we apply different train-
ing data augmentation strategies:

• For textures, we collect datasets of wood, metal, and stone tex-
tures from Mayang’s Textures [Ma10] and Adobe Stock Im-
ages [Ado19]. During training we crop random patches at 64×
64 resolution.
• For face images, we use the FFHQ [KLA19] and

CelebA [LLWT15] datasets. For FFHQ we downsample to
a 256× 256 resolution, and randomly crop a 236× 236 patch
that is resized to the resolution expected by the classification
network. For CelebA we crop 160× 160 patches within the
central face area (i.e., center 176× 176 window). Furthermore,
we apply a random intensity and contrast change within a range
of ±5%.
• For bedroom images, we use the LSUN dataset [YZS∗15]. We

randomly crop a 236× 236 window which is then resampled to
the resolution the classifier expects. We also apply the same ran-
dom intensity and contrast augmentation within a range of±5%.

Generative Adversarial Network Our interactive curation strat-
egy is agnostic to the GAN architecture and/or training strategy.
When the input source is provided as a GAN (instead of a dataset of
input exemplars), then instead of training a new GAN from scratch
in the last stage, we finetune the input GAN based on the filtered
training data (sampled from the input GAN). Finetuning can sig-
nificantly reduce the training time, especially for high resolution
GANs.

For the results shown in this paper we use the following GAN
architectures:

• For textures, we train a Wasserstein GAN [GAA∗17] for each
kind of material, i.e., wood, metal, and stone.
• For both the face and bedroom images, we use a pre-trained

StyleGAN [KLA19].

4. Applications

Our interactive dataset curation system for training or refining gen-
erative models is general and suitable for a diverse range of appli-
cations. In this section, we demonstrate this versatility on four pos-
sible GAN applications: creating a targeted generative model based
on user-defined criteria, cleaning training data, modifying the dis-
tribution of a generative model, and removing unwanted samples
from an existing generative model.

Targeted Generative Model Creation A direct application of
our framework is to use the interactive curation system to create a

targeted generative model based on user-specified criteria. Given a
large database of exemplars, or alternatively a more general GAN,
we first learn the user’s intent using our system. We combine the
trained classifiers by ensembling their outputs [HS90]. Next, we
sample the input distribution uniformly and retain the positive clas-
sified exemplars. Finally, given this filtered training data we train a
novel GAN or, in case of an input source GAN, refine it.

Figure 1 shows four examples of created GANs that synthesize:
rough stone textures, rusted metals, bedrooms with twin beds, and
portraits of happy faces. For each GAN we show a collage of ran-
domly generated exemplars. Each of these GANs are trained from
datasets curated from one of the general datasets listed in subsec-
tion 3.4. Our adaptive and interactive system is more effective than
having the user label an equal number of random exemplars from
the input dataset (Figure 4).

It should be noted that the quality of the created GAN can only
be as good as the training data. A large source dataset does not
guarantee a sufficiently large training set if the user’s intent is only
sparsely represented. As a general guideline, if the input dataset is
small, or if there are few exemplars in the dataset that match the
user’s intent, then we first train a general GAN (which in theory
can generate an infinite number of samples) and use this as the
input training set.

Cleaning Training Data Training data for deep learning are com-
monly mined from uncontrolled internet sources. Such datasets of-
ten contain exemplars that have artifacts or that do not match the
search criteria. Our system can be used to remove such unwanted
training data. In this case, we train a classifier to distinguish be-
tween good and bad training data. Figure 5 demonstrates this on the
metal texture dataset that consists of metal textures cropped from
larger images. Some of the cropped patches only contain a part of
a metal texture or contain other (non-metal) textures.

Distribution Modification Our interactive system can also be em-
ployed to modify the output distribution of a generative model. For
example, the user might want to reduce the occurrence probability
of a certain pattern in a texture synthesis GAN.

As before, we follow the same selection process. We first learn
the subset for which the user would like to change the occurrence
probability, and allow the user to set the new occurrence ratio Pu of
the selection versus the remainder. Next, we sample a large train-
ing set from the input GAN, and store them in two pools based
on the trained classifier. During GAN finetuning, we select train-
ing data according to the user’s indicated distribution. E.g., if the
user indicated that the selected subset should comprise 66% of the
training set, we sample 66% of the samples from the selected pool,
and 34% from the unselected pool. Since we only indirectly con-
trol the output distribution (via the sampled input distribution), the
resulting output distribution from the refined GAN does not nec-
essarily mimic the desired distribution exactly. We therefore, esti-
mate the output distribution by sampling the GAN and computing
the rate Pg at which the samples pass the classifier. We then refine
the GAN again with an adjusted sampling ratio of 2Pu−Pg. We re-
peat this process until the desired ratio is met (within a threshold of
5%). Due to the stochastic nature of the GAN training process, the
resulting ratio fluctuates over subsequent iterations. We therefore
monitor the output occurrence ratio every 100 training iterations
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(a) GAN obtained from interactively curated candidates (b) GAN obtained from 600 random selected candidates

Figure 4: Comparison of a GAN created from a training set selected with a classifier obtained with our interactive system versus training a
classifier on an equal number (600) of randomly selected exemplars using “portraits of females with glasses” as the selection criterion. The
latter exhibits more exemplars that do not match the selection criteria; failure cases are highlighted in yellow.

(a) Generated textures (b) Selected training data (c) Discarded training data

Figure 5: Our interactive system is also suited to clean up train-
ing data mined from unreliable sources. In this example we remove
unwanted texture patterns and incompletely cropped patches. Tex-
tures generated by the resulted GAN (a) closely matches the desired
metal textures (b) and contains none of the unwanted patterns (c).

and find the generator with the best matching ratio that follows the
user’s intent.

Two examples of altered distributions are shown in Figure 6
where we change the occurrence of wood textures with a cold hue
to 25%, and of baby portraits to 50%.

Unwanted Sample Removal The training process of a GAN at-
tempts to learn and mimic the distribution of the input exemplars.
However, due to local minima in training, or missing or corrupted
training exemplars in some regions of the target distribution, this
can result in a GAN whose output distribution does not match the
user’s intent. Our interactive framework can also be used to identify
unwanted samples and remove them from the GAN.

Similar as before the user marks wanted and unwanted exem-
plars sampled from the input GAN, and an appropriate classifier is
trained. We can then synthesize training data by sampling the orig-
inal GAN and checking the validity of each sample with the trained
classifier. Using this synthesized training set, we then finetune the
original GAN, such that the resulting GAN exhibits less unwanted
samples.

Figure 7 shows a bedroom GAN. Highlighted are three images

that exhibit artifacts and which are marked as “unwanted”. These
unwanted samples are replaced in the improved GAN (sampled
with the same random latent codes).

5. Discussion

The applications in section 4 demonstrate that our interactive
framework for curating training sets can yield GANs that quali-
tatively match the user’s intent. In this section we quantitatively
validate the accuracy as well as examine the impact of each of the
components and parameters of our interactive system.

5.1. Quantitative Validation

We validate our interactive curation system on two dataset types:
(wood, metal, and stone) textures and face images. To quantita-
tively compare the quality of the results, we employ different pre-
defined selection criteria for which a ground truth classifier is avail-
able. For the texture datasets, we consider the following easily com-
putable selection criteria:

• Contrast: we compute a measure of contrast as the standard de-
viation over all gray-scale pixels of an image. We set the high
contrast selection criterion as having a contrast larger than 9.5.
The contrast low selection criterion is set to an upper contrast
threshold of 8. Contrast values in between 8 and 9.5 are marked
as “undecided”.
• The hue cold selection criterion is defined as having an H ∈

(45,315) and S∈ (0.18,1.0), where H and S are the average Hue
and Saturation values of the image in the HSV color space. Im-
ages with H ∈ (0,35)∪ (325,360) or S ∈ (0.0,0.14) are marked
as not meeting the selection criteria. All other images are marked
“undecided”.
• Directionality is computed as the ratio of the largest directional

Gabor filter response [Gab47,FS89] over the smallest directional
Gabor filter response. The directional Gabor filters are computed
for 8 evenly distributed directions and with Gabor filter param-
eters σ = 5, λ = 5, ψ = 0, and γ = 1. We consider the texture
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(a) Modified wood texture GAN (25% probability for “cold hue textures”) (b) Modified face GAN (50% probability for “baby faces”)

Figure 6: Modifying the GAN distribution by changing the occurrence of certain types of instance types: (a) changing the probability of
wood texture with a cold hue to a 25% occurrence rate, and (b) changing the probability of baby portraits to 50%.

(a) Original GAN (b) Improved GAN

Figure 7: Example of removing unwanted samples from a GAN distribution. (a) Original GAN with unwanted samples highlighted. (b)
Improved GAN refined from the original GAN without the unwanted samples.

Figure 8: Exemplars from a custom wood GAN that generates “red
wood with detailed grain”. Note that labeling a small random set
of exemplars from the input dataset fails to produce a reasonable
classifier for this selection criterion, showcasing the necessity of
our system for some selection criteria.

to be directional if the directionality is larger than 5, and non-

directional if smaller than 4; as before anything in between is
marked as “undecided”.
• A texture is considered horizontal if the ratio of the horizontal

Gabor filter response over the vertical response is larger than
3. We consider any ratio less than 2.5 as not horizontal, and in
between 2.5 and 3 as “undecided”.
• Manual Selection Criterion: to avoid bias to computable selec-

tion criteria, we also create a manually marked selection crite-
rion that roughly corresponds to “red wood with detailed grain
patterns” (Figure 8). To create a ground truth classifier, we man-
ually mark 22,000 exemplars and use these as the training set
for a reference neural network classifier. We use the probability
output to determine the label. We set a positive label when the
probability is larger than 0.5, a negative label when less than 0.2,
and “undecided” for anything in between.

For the face dataset we define ground truth reference classifiers
based on the labels in the CelebA dataset which we regard as cor-
rect. Since the CelebA labels are binary, we do not consider an
“undecided” label for the validation tests on faces.

We use the ground truth classifier also as an oracle for labeling
the candidate exemplars during the interactive selection process in
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TAR
FAR 0.01 FAR 0.05 FAR 0.1

Wood texture
Low Contrast 0.661 0.896 0.961
Hue Cold 0.920 0.944 0.947
Horizontal 0.889 0.985 0.996
Directional 0.380 0.651 0.771
Manually Marked 0.971 0.989 0.994
Metal texture
High Contrast 0.909 0.964 0.980
Stone texture
Hue Cold 0.773 0.827 0.845
Face image
Gray hair 0.648 0.862 0.929
Double chin & High cheekbones 0.228 0.466 0.647
Eyeglasses & No Mustache 0.947 0.982 0.987
Wearing hat 0.837 0.939 0.968
Chubby & Oval face 0.210 0.366 0.450
Goatee 0.426 0.776 0.880
Bald 0.735 0.920 0.962
Eyeglasses & female 0.927 0.968 0.981

Table 1: Summary of the classification accuracy for each of the
selection criteria.

Average Verification TAR
FAR 0.001 0.01 0.02 0.05 0.1 0.2
Random 0.152 0.413 0.517 0.652 0.738 0.818
Our 0.296 0.620 0.696 0.785 0.851 0.903
All data 0.343 0.686 0.775 0.883 0.939 0.979

Table 2: A comparison of average TAR over different face selection
tasks for different labeling strategies: labeling 600 random selected
candidates, labeling 600 candidates selected with our interactive
system, and using all reference labels over the whole dataset.

lieu of a human user. The above selection criteria have been inten-
tionally designed to cover a wide variety in ratio and distribution of
positive samples over the input dataset.

Table 1 lists the accuracy of our system on the above cases us-
ing only 600 (i.e., 30 rounds of 20) labeled exemplars. Typically
the accuracy of a classifier is quantified by positive and negative
precision and recall. However, precision and recall fail to provide a
nuanced picture when the ratio between positive and negative sam-
ples is unbalanced. Therefore, as in prior work on face recogni-
tion [MaTaH∗16, YRZ∗17], we will use the true accept rate (TAR)
for a fixed false positive rate (FAR) as a quality metric. In the ma-
jority of cases, our method is able to produce a classifier with high
accuracy. The cause for the lower accuracy in “directional”, “dou-
ble chin & high cheekbones”, “chubby & oval face”, and “Goa-
tee”) is related to the number of positive exemplars in the training
set versus the complexity of the selection criteria (i.e., insufficient
training samples that meet the selection criteria).

To gain a better understanding on the general performance, we
compare the accuracy, averaged over all face selection cases, of a
labeling on 600, randomly selected candidates, a labeling over 600
adaptively selected candidates, and a labeling trained over all the
labels (Table 2). The first serves as a baseline, whereas the last is

Average Verification TAR
FAR 0.01 FAR 0.05 FAR 0.1

Random 0.600 0.786 0.852
QBC 0.678 0.804 0.856
QBC + UL 0.742 0.854 0.893
QBC + DD 0.765 0.868 0.910
QBC + UL + DD 0.812 0.915 0.946
Our + Parallel 0.786 0.894 0.928

Table 3: Ablation study on wood texture curation by en-
abling/disabling various combinations of: query-by-committee
(QBC), allowing an “undecided” label (UL), using the disagree-
ment distance (DD), and using parallel candidate selection and la-
beling (Parallel) to improve performance.

the theoretical upperbound on what is possible with the training
data. The random selection fails to produce accurate results, while
the accuracy of our interactive adaptive method is closer to the up-
perbound. We refer to the supplemental material for a comparison
of the accuracy for each selection criterion.

5.2. Ablation Study

We perform an ablation study on the texture selection criteria to
gauge the effect of each of the components of our system. For each
test, we keep the total number of candidates the oracle has to la-
bel fixed at 600, and select 20 candidates per round. As a baseline
we let the oracle label randomly selected candidates. We compare
the average baseline TAR scores (for different fixed FAR thresh-
olds) over all the test cases to our system’s scores when selecting
candidates with a Query-by-Committee strategy with/without using
the “undecided” label, and with/without the disagreement distance
metric for promoting diversity. For the ablation case without the
“undecided” label, we binarize the label process by using the mid-
dle (average) threshold for determining the positive and negative
label (e.g., if contrast is larger than 8.75 = (9.5 + 8)/2 then we
label it as binary high contrast, if less than 8.75 we label it as neg-
ative). In the case without the disagreement metric we simply use
the top 20 exemplars with the largest disagreement. Table 3 shows
that, on average, naive Query-by-Committee already outperforms
random sampling. Each of the components further improves accu-
racy, and when all work together, an additional improvement is ob-
served. Note that we exclude the manually marked wood selection
(Figure 8) as we found that the baseline failed to find a sufficient
number of positive exemplars to train a suitable classifier. This is an
example of a case, where, unless the user labels a massive amount
of textures, our interactive system is necessary to create a GAN that
matches the user’s target criteria.

In our current system we parallelize the labeling process with
the training and selection process. As a consequence, selection is
made on a classifier that does not use the latest round of labeled
exemplars. The results in Table 3 are computed without this par-
allelization. To better understand the potential negative impact of
parallelization, we also include the scores for our full system with
parallelization. On average, this parallelization has a modest impact
on the accuracy of the final results, while simultaneously yielding a
significant performance improvement. We refer to the supplemental
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Figure 9: Impact of label batch size (Xc) on the accuracy of the
classifier.

material for a listing of the ablation study results for each selection
criterion.

5.3. Impact of batch size Xc

A key parameter in our system is the size of the batch of candidates
shown to the user per round. In theory, a smaller batch of candidates
means that the selection process can more quickly benefit from the
assigned labels. However, decreasing the batch size also negatively
affects the interactivity (i.e., high cost of training the classifier).

To better understand the impact on the accuracy (ignoring com-
putational costs), we plot the batch size versus the accuracy in Fig-
ure 9 over three selected criteria for wood textures. From this we
can see that the accuracy increases with smaller batch size (as
expected). However, we also note that the accuracy gain is lim-
ited when the batch size is less than 20. We find that the perfor-
mance scales linearly and inversely proportional with batch size
(e.g., Xc = 5 takes 4 times as long as Xc = 20). Therefore, we rec-
ommend Xc = 20 as it strikes a good balance between computation
time and accuracy; we have used Xc = 20 for all results (unless
indicated otherwise) in this paper.

5.4. Impact of Number of Rounds/Labeled Candidates

Table 4 further compares the accuracy for an increasing number of
rounds, and thus total number of labeled candidates. While increas-
ing the number of rounds/candidates increases the accuracy, it also
comes at an increased labeling cost for the user. For the examples in
this paper, we found that 30 rounds offers a good balance between
labeling effort versus accuracy. However, more complex selection
criteria might require more rounds to achieve the desired accuracy.

5.5. Impact of Number of Classifiers

Another key parameter is the size of the committee for QBC.
Whereas a larger committee will require more computational re-
sources to train the classifiers, a smaller committee can incur a per-
formance drop due to lack of variation. Table 5 lists the accuracy
for a committee size of 2, 4, and 8 using the same setup as in Table 2
and 4. For the minimum committee size (i.e., 2), a notable drop in

Total Average Verification TAR
Rounds Cand. FAR 0.01 FAR 0.05 FAR 0.1

30 600 0.620 0.785 0.851
60 1200 0.619 0.805 0.864
120 2400 0.630 0.821 0.880
240 4800 0.641 0.838 0.907

All Data (180K) 0.686 0.883 0.939

Table 4: A comparison of average TAR over different face selection
tasks for varying numbers of rounds (30, 60, 120, and 240 rounds)
of 20 adaptively selected candidates labeled with our interactive
system.

Average Verification TAR
FAR 0.001 0.01 0.02 0.05 0.1 0.2
2 classifiers 0.261 0.591 0.683 0.776 0.840 0.900
4 classifiers 0.296 0.620 0.696 0.785 0.851 0.903
8 classifiers 0.312 0.625 0.698 0.796 0.860 0.919

Table 5: Impact of the committee size (i.e., number of classifiers)
for QBC on the average TAR over different face selection tasks. 2
classifiers incur a significant accuracy drop, whereas 8 classifiers
require significantly more computational resources for moderate
gains in accuracy.

performance is observed. In contrast, the accuracy only slightly in-
creases for 8 classifiers at a significant increase in computational
cost. Therefore, we opt for using a committee of 4 classifiers which
maintains interactivity while retaining good accuracy.

5.6. Performance

Our dataset curation framework runs at interactive rates on a work-
station with 4 NVidia TitanX GPUs. The computational cost (per
round) depends on the curation task:

• For most texture curation tasks, candidate selection takes 21 sec-
onds, and classifier training takes 45 seconds. The computational
cost of the selection phase increases for tasks with low target dis-
tribution density (due to the adaptive selection): wood with cold
hue and the manually created red wood with detailed grain take
41 and 206 seconds respectively.
• The face curation tasks all have a similar running time: candi-

date selection takes 10 seconds, classifier training takes only 3
seconds, and feature map pre-computation takes an additional 6
seconds. The face curation tasks run faster since they operate in
a pre-optimized feature space, which only needs to be evaluated
once per sample (i.e., it can be pre-computed).

Note that with our parallel candidate selection, the majority of the
computation is performed while the user is labeling candidates;
typically labeling takes longer than the required computation time.
Furthermore, we only label significantly less exemplars than the
full dataset while achieving good results. E.g., for the 180K image
CelebA dataset, it is practically impossible to label all exemplars,
while we only label less than 1%.
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6. Conclusions

This paper presents a novel interactive system for curating datasets
for training or refining generative models. Our method builds on
batch-based active learning and extends query-by-consensus to cor-
rectly handle uncertain oracles (i.e., users). Furthermore, we pro-
pose a novel disagreement metric to promote diversity in the sam-
pled batches for the user to label. In each round, a small diverse
set of exemplars is presented to the user to label, and the results
are used to refine a(n ensemble of) classifier(s), which in turn guide
the selection process of candidate exemplars. We demonstrated the
flexibility of our framework on four applications: creating GANs
that meet a user-defined criteria, cleaning up training data, modify-
ing the distribution of a generative model, and removing unwanted
samples from a GAN.

For future work, we would like to explore other operations to
modify or refine a generative model as well as investigate novel ac-
celeration methods to further enhance the interactivity of our sys-
tem.
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